Article Management

You must log in to submit or manage articles.

You do not have an account yet ? Sign up.

MorphoMuseuM in press original article (anatomy atlas)

Original article : anatomy atlas

3D atlas and comparative osteology of the middle ear ossicles among Eulipotyphla (Mammalia, Placentalia).
Daisuke Koyabu
Keywords: aquatic adaptation; convergence; Eulipotyphla; fossorial adaptation; hearing

doi: 10.18563/m3.3.2.e3

Cite this article: Koyabu D., 2017. 3D atlas and comparative osteology of the middle ear ossicles among Eulipotyphla (Mammalia, Placentalia). MorphoMuseuM 3 (2)-e3. doi: 10.18563/m3.3.2.e3

Export citation

Abstract

Considerable morphological variations are found in the middle ear among mammals. Here I present a three-dimensional atlas of the middle ear ossicles of eulipotyphlan mammals. This group has radiated into various environments as terrestrial, aquatic, and subterranean habitats independently in multiple lineages. Therefore, eulipotyphlans are an ideal group to explore the form-function relationship of the middle ear ossicles. This comparative atlas of hedgehogs, true shrews, water shrews, mole shrews, true moles, and shrew moles encourages future studies of the middle ear morphology of this diverse group.
  

Specimens and 3D Data

Erinaceus europaeus DK2331 View specimen

M3#151_DK2331

Left middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.151

Data citation: Koyabu D., 2017. M3#151_DK2331. doi: 10.18563/m3.sf.151

 




Download 3D data

Anourosorex yamashinai SIK_yamashinai View specimen

M3#152_SIK_yamashinai

Left middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.152

Data citation: Koyabu D., 2017. M3#152_SIK_yamashinai. doi: 10.18563/m3.sf.152

 




Download 3D data

Blarina brevicauda M8003 View specimen

M3#153_M8003

Right middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.153

Data citation: Koyabu D., 2017. M3#153_M8003. doi: 10.18563/m3.sf.153

 




Download 3D data

Chimarrogale platycephala DK5481 View specimen

M3#162_DK5481

Left middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.162

Data citation: Koyabu D., 2017. M3#162_DK5481. doi: 10.18563/m3.sf.162

 




Download 3D data

Suncus murinus DK1227 View specimen

M3#155_DK1227

Left middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.155

Data citation: Koyabu D., 2017. M3#155_DK1227. doi: 10.18563/m3.sf.155

 




Download 3D data

Condylura cristata SIK0050 View specimen

M3#156_SIK0050

Right middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.156

Data citation: Koyabu D., 2017. M3#156_SIK0050. doi: 10.18563/m3.sf.156

 




Download 3D data

Euroscaptor klossi SIK0673 View specimen

M3#163_SIK0673

Left middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.163

Data citation: Koyabu D., 2017. M3#163_SIK0673. doi: 10.18563/m3.sf.163

 




Download 3D data

Euroscaptor malayana SIK_malayana View specimen

M3#164_SIK_malayana

Left middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.164

Data citation: Koyabu D., 2017. M3#164_SIK_malayana. doi: 10.18563/m3.sf.164

 




Download 3D data

Mogera wogura DK2551 View specimen

M3#159_DK2551

Left middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.159

Data citation: Koyabu D., 2017. M3#159_DK2551. doi: 10.18563/m3.sf.159

 




Download 3D data

Talpa altaica SIK_altaica View specimen

M3#161_SIK_altaica

Right middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.161

Data citation: Koyabu D., 2017. M3#161_SIK_altaica. doi: 10.18563/m3.sf.161

 




Download 3D data

Urotrichus talpoides DK0887 View specimen

M3#165_DK0887

Left middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.165

Data citation: Koyabu D., 2017. M3#165_DK0887. doi: 10.18563/m3.sf.165

 




Download 3D data

Oreoscaptor mizura DK6545 View specimen

M3#166_DK6545

Left middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.166

Data citation: Koyabu D., 2017. M3#166_DK6545. doi: 10.18563/m3.sf.166

 




Download 3D data

Scalopus aquaticus SIK_aquaticus View specimen

M3#167_SIK_aquaticus

Left middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.167

Data citation: Koyabu D., 2017. M3#167_SIK_aquaticus. doi: 10.18563/m3.sf.167

 




Download 3D data

Scapanus orarius SIK_orarius View specimen

M3#168_SIK_orarius

Left middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.168

Data citation: Koyabu D., 2017. M3#168_SIK_orarius. doi: 10.18563/m3.sf.168

 




Download 3D data

Neurotrichus gibbsii SIK_gibbsii View specimen

M3#169_SIK_gibbsii

Left middle ear ossicles

Type: "3D_surfaces"

3D view: doi: 10.18563/m3.sf.169

Data citation: Koyabu D., 2017. M3#169_SIK_gibbsii. doi: 10.18563/m3.sf.169

 




Download 3D data


 

in press

Bibliography

Abe, H., 2003. Trapping, habitat, and activity of the Japanese water shrew, Chimarrogale platycephala (in Japanese). Honyurui Kagaku 43, 51-65.

Aitkin, L. M., Horseman, B. G., Bush, B. M. H., 1982. Some aspects of the auditory pathway and audition in the European mole, Talpa europaea. Brain, Behavior and Evolution 21(2-3), 49-59. https://doi.org/10.1159/000121616

Asher, R. J., Geisler, J. H., Sánchez-Villagra, M. R., 2008. Morphology, paleontology, and placental mammal phylogeny. Systematic Biology 57(2), 311-317. https://doi.org/10.1080/10635150802033022

Burda, H., 1979. Morphology of the middle and inner ear in some species of shrews (Insectivora, Soricidae). Přírodovědné práce Ústav°u Československé akademie věd v Brně 13(4), 1-56.

Burda, H., 2006. Ear and eye in subterranean mole-rats, Fukomys anselli (Bathyergidae) and Spalax ehrenbergi (Spalacidae): progressive specialisation or regressive degeneration? Animal Biology 56(4), 475-486. https://doi.org/10.1163/157075606778967847

Burda, H., Bruns, V., Hickman, G. C., 1992. The ear in subterranean insectivora and rodentia in comparison with ground-dwelling representatives. I. sound conducting system of the middle ear. Journal of Morphology 214(1), 49-61. https://doi.org/10.1002/jmor.1052140104

Burda, H., Bruns, V., Müller, M., 1990. Sensory adaptations in subterranean mammals. In: Nevo, E., Reig, O. (Eds.), Evolution of Subterranean Mammals at the Organismal and Molecular Levels. Wiley-Liss, New York, pp. 269-293.

Cassola, F., 2016. Euroscaptor klossi. The IUCN red list of threatened species, e.T41460A22320395. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T41460A22320395.en

Dalquest, W. W., Orcutt, D. R., 1942. The biology of the least shrew-mole, Neurotrichus gibbsii minor. The American Midland Naturalist Journal 27(2), 387-401. https://doi.org/10.2307/2421007

Doran, A. H., 1879. Morphology of the mammalian ossicula auditus. Transactions of the Linnean Society of London 1(7), 371-497. https://doi.org/10.1111/j.1096-3642.1878.tb00663.x

Dubey, S., Salamin, N., Ohdachi, S. D., Barrière, P., Vogel, P., 2007. Molecular phylogenetics of shrews (Mammalia: Soricidae) reveal timing of transcontinental colonizations. Molecular Phylogenetics and Evolution 44(1), 126-137. 10.1016/j.ympev.2006.12.002. https://doi.org/10.1016/j.ympev.2006.12.002

Fleischer, G., 1978. Evolutionary principles of the mammalian middle ear. Advances in Anatomy, Embryology and Cell Biology 55, 1-70. https://doi.org/10.1007/978-3-642-67143-2

Gatesy, J., Meredith, R. W., Janecka, J. E., Simmons, M. P., Murphy, W. J., Springer, M. S., 2016. Resolution of a concatenation/coalescence kerfuffle: partitioned coalescence support and a robust family‐level tree for Mammalia. Cladistics, in press. https://doi.org/10.1111/cla.12170

George, S. B., Choate, J. R., Genoways, H. H., 1986. Blarina brevicauda. Mammalian Species 261, 1-9.

Godfrey, G. K., 1955. A field study of the activity of the mole (Talpa europaea). Ecology 36(4), 678-685. https://doi.org/10.2307/1931306

Hamilton, W. J., 1931. Habits of the star-nosed mole, Condylura cristata. Journal of Mammalogy 12(4), 345-355. https://doi.org/10.2307/1373758

He, K., Li, Y. J., Brandley, M. C., Lin, L. K., Wang, Y. X., Zhang, Y. P., Jiang, X. L., 2010. A multi-locus phylogeny of Nectogalini shrews and influences of the paleoclimate on speciation and evolution. Molecular Phylogenetics and Evolution 56(2), 734-746. https://doi.org/10.1016/j.ympev.2010.03.039

He, K., Shinohara, A., Jiang, X.-L., Campbell, K. L., 2014. Multilocus phylogeny of talpine moles (Talpini, Talpidae, Eulipotyphla) and its implications for systematics. Molecular Phylogenetics and Evolution 70, 513-521. https://doi.org/10.1016/j.ympev.2013.10.002

Henson Jr, O. W., 1961. Some morphological and functional aspects of certain structures of the middle ear in bats and insectivores. University of Kansas Science Bulletin 42(3), 151-255.

Heth, G., Frankenberg, E., Nevo, E., 1986. Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi). Experientia 42(11), 1287-1289. https://doi.org/10.1007/BF01946426

Kawada, S., 2016. Morphological review of the Japanese mountain mole (Eulipotyphla, Talpidae) with the proposal of a new genus. Mammal Study 41(4), 191-205. https://doi.org/10.3106/041.041.0404

Kawada, S., Shinohara, A., Yasuda, M., Oda, S., Lim, B. L., 2003. The mole of Peninsular Malaysia: notes on its identification and ecology. Mammal Study 28(1), 73-77. https://doi.org/10.3106/mammalstudy.28.73

Kawada, S., Yasuda, M., Shinohara, A., Lim, B. L., 2008. Redescription of the Malaysian mole as to be a true species, Euroscaptor malayana (Insectivora, Talpidae). Memoirs of the National Science Museum, Tokyo 45, 65-74.

Ketten, D. R., 1992. The marine mammal ear: specializations for aquatic audition and echolocation. In: Webster, D.B., Popper, A.N., Fay, R.R. (Eds.), The Evolutionary Biology of Hearing. Springer, New York, pp. 717-750. https://doi.org/10.1007/978-1-4612-2784-7_44

Krettek, A., Gullberg, A., Arnason, U., 1995. Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog, Erinaceus europaeus, and the phylogenetic position of the Lipotyphla. Journal of Molecular Evolution 41(6), 952-957. https://doi.org/10.1007/BF00173175

Lavender, D., Taraskin, S. N., Mason, M. J., 2011. Mass distribution and rotational inertia of “microtype” and “freely mobile” middle ear ossicles in rodents. Hearing Research 282, 97-107. https://doi.org/10.1016/j.heares.2011.09.003

Lin, L.-K., Motokawa, M., 2014. Mammals of Taiwan: volume 1. Soricomorpha. Tunghai University Press, Taichung.

Mason, M. J., 2001. Middle ear structures in fossorial mammals: a comparison with non-fossorial species. Journal of Zoology 255(4), 467-486. https://doi.org/10.1017/S0952836901001558

Mason, M. J., 2003. Morphology of the middle ear of golden moles (Chrysochloridae). Journal of Zoology 260(4), 391-403. 0.1017/S095283690300387X.

Mason, M. J., 2006. Evolution of the middle ear apparatus in talpid moles. Journal of Morphology 267(6), 678-695. https://doi.org/10.1002/jmor.10430

Mason, M. J., 2016. Structure and function of the mammalian middle ear. II: Inferring function from structure. Journal of Anatomy 228(2), 300-312. https://doi.org/10.1111/joa.12316

Miller, G. S. 1940. Notes on some moles from southeastern Asia. Journal of Mammalogy 21(4), 442-444. https://doi.org/10.2307/1374883

Motokawa, M., 2004. Phylogenetic relationships within the family Talpidae (Mammalia: Insectivora). Journal of Zoology 263(2), 147-157. https://doi.org/10.1017/S0952836904004972

Nishihara, H., Maruyama, S., Okada, N., 2009. Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. Proceedings of the National Academy of Sciences of the United States of America 106(13), 5235-5240. https://doi.org/10.1073/pnas.0809297106

Nummela, S., 1995. Scaling of the mammalian middle ear. Hear Res 85(1), 18-30. https://doi.org/10.1016/S0378-5955(99)00054-4https://doi.org/10.1016/0378-5955(95)00030-8

Nummela, S., Wägar, T., Hemilä, S., Reuter, T., 1999. Scaling of the cetacean middle ear. Hearing Research 133(1), 71-81. https://doi.org/10.1016/S0378-5955(99)00054-4

Ohdachi, S., Dokuchaev, N. E., Hasegawa, M., Masuda, R., 2001. Intraspecific phylogeny and geographical variation of six species of northeastern Asiatic Sorex shrews based on the mitochondrial cytochrome b sequences. Molecular Ecology 10(9), 2199-2213. https://doi.org/10.1046/j.1365-294X.2001.01359.x

Ohdachi, S. D., Hasegawa, M., Iwasa, M. A., Vogel, P., Oshida, T., Lin, L. K., Abe, H., 2006. Molecular phylogenetics of soricid shrews (Mammalia) based on mitochondrial cytochrome b gene sequences: with special reference to the Soricinae. Journal of Zoology 270(1), 199-200. https://doi.org/10.1111/j.1469-7998.2006.00125.x

Ohdachi, S. D., Ishibashi, Y., Iwasa, M. A., Saitoh, T., 2009. The Wild Mammals of Japan. Shoukadoh, Kyoto.

Ohdachi, S. D., Iwasa, M. A., Nesterenko, V. A., Abe, H., Masuda, R., Haberl, W., 2004. Molecular phylogenetics of Crocidura shrews (Insectivora) in east and central Asia. Journal of Mammalogy 85(3), 396-403. https://doi.org/10.1644/1545-1542(2004)085<0396:MPOCSI>2.0.CO;2

Petersen, K. E., Yates, T. L., 1980. Condylura cristata. Mammalian Species (129), 1-4. https://doi.org/10.2307/3503812

Pleštilová, L., Hrouzková, E., Burda, H., Šumbera, R., 2016. Does the morphology of the ear of the Chinese bamboo rat (Rhizomys sinensis) show “subterranean” characteristics? Journal of Morphology 277(5), 575-584. https://doi.org/10.1002/jmor.20519

Sánchez-Villagra, M. R., Horovitz, I., Motokawa, M., 2006. A comprehensive morphological analysis of talpid moles (Mammalia) phylogenetic relationships. Cladistics 22(1), 59-88. https://doi.org/10.1111/j.1096-0031.2006.00087.x

Segall, W., 1970. Morphological parallelisms of the bulla and auditory ossicles in some insectivores and marsupials. Fieldiana Zoology 51, 169-205. https://doi.org/10.5962/bhl.title.2899

Shinohara, A., Campbell, K. L., Suzuki, H., 2003. Molecular phylogenetic relationships of moles, shrew moles, and desmans from the new and old worlds. Molecular Phylogenetics and Evolution 27(2), 247-258. https://doi.org/10.1016/S1055-7903(02)00416-5

Shinohara, A., Campbell, K. L., Suzuki, H., 2005. An evolutionary view on the Japanese talpids based on nucleotide sequences. Mammal Study 30(1), 19-24. https://doi.org/10.3106/1348-6160(2005)30[S19:AEVOTJ]2.0.CO;2

Shinohara, A., Kawada, S.-i., Son, N. T., Koshimoto, C., Endo, H., Can, D. N., Suzuki, H., 2014. Molecular phylogeny of east and southeast Asian fossorial moles (Lipotyphla, Talpidae). Journal of Mammalogy 95(3), 455-466. https://doi.org/10.1644/13-MAMM-A-135

Shinohara, A., Suzuki, H., Tsuchiya, K., Zhang, Y. P., Luo, J., Jiang, X. L., Wang, Y. X., Campbell, K. L., 2004. Evolution and biogeography of talpid moles from continental East Asia and the Japanese Islands inferred from mitochondrial and nuclear gene sequences. Zoological Science 21(12), 1177-1185.
https://doi.org/10.2108/zsj.21.1177

Solntseva, G., 2011. The middle ear in the ontogenesis of mammals. Russian Journal of Developmental Biology 42(6), 412-425. https://doi.org/10.1134/S1062360411060051

Spoor, C. F., Zonneveld, F. W., Macho, G. A., 1993. Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. American Journal of Physical Anthropology 91(4), 469-484. https://doi.org/10.1002/ajpa.1330910405

Stroganov, S. U., 1945. Morphological characters of the auditory ossicles of recent Talpidae. Journal of Mammalogy 26(4), 412-420. https://doi.org/10.2307/1375161

Wannaprasert, T., 2016. Functional morphology of the ear of the lesser bamboo rat (Cannomys badius). Mammal Study 41(3), 107-117. https://doi.org/10.3106/041.041.0301

Whidden, H. P., 2000. Comparative myology of moles and the phylogeny of the Talpidae (Mammalia, Lipotyphla). American Museum Novitates 3294, 1-53. https://doi.org/10.1206/0003-0082(2000)3294<0001:CMOMAT>2.0.CO;2

Yates, T. L., Moore, D. W., 1990. Speciation and evolution in the family Talpidae (Mammalia: Insectivora). In: Nevo, E., Reig, O. (Eds.), Evolution of Subterranean Mammals at the Organismal and Molecular Levels. Wiley-Liss, New York, p. 269.

Yokohata, Y., 2005. A brief review of the biology on moles in Japan. Mammal Study 30, S25-S30. https://doi.org/10.3106/1348-6160(2005)30[S25:ABROTB]2.0.CO;2 


PDF