

3D models related to the publication: Pushing the boundary? Testing the 'functional elongation hypothesis' of the giraffe's neck

Marilena A. Müller¹, Luisa Merten¹, Christine Böhmer², John A. Nyakatura^{1*}

¹AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany

² UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, 55 rue Buffon, 75005 Paris, France *Corresponding author: John.nyakatura@hu-berlin.de

Abstract

This contribution contains the 3D models analyzed in Müller et al. (2021) "Pushing the boundary? Testing the 'functional elongation hypothesis' of the giraffe's neck". Evolution.

Keywords: cetartiodactyla, comparative anatomy, neck, vertebrae, vertebral column

Submitted:2020-09-06, published online:2021-01-12. https://doi.org/10.18563/journal.m3.129

INTRODUCTION

The long neck of giraffes has fascinated comparative anatomists for centuries. Despite its extraordinary length, it maintains the usual count of just seven cervical vertebrae common in mammals. In the associated paper, we test the 'functional elongation hypothesis' of the giraffe neck which has been put forward by Lankester in 1908 and posits that the first thoracic vertebra is functionally incorporated into the giraffe neck. We tested this hypothesis using a combination of a three-dimensional (3D) geometric morphometric analysis and 3D modelling of range of motion at the cervicothoracic transition in a broad sample of Cetartiodactyla (fig. 1, table 1). As predicted by the 'functional elongation hypothesis', the first thoracic vertebrae of the giraffe converges in its shape with the 7th cervical of the other species. Moreover, we documented an increased range of motion at the cervicothoracic transition in giraffes. All analyzed 3D models are published here.

METHODS

Digital 3D surface models of specimens were acquired using either micro-computed tomography (μ CT) or photogrammetry (PH). One specimen was laser scanned and made available for the study (see table 1). The raw data obtained by the μ CT (YXLON FF35 CT-scanner) were further edited with Fiji plugins for Image J (version 1.51k; Schneider et al., 2012, Schindelin et al., 2012). Scans were cropped to reduce the amount of data and the contrast was increased before being saved as 16-bit binary tiff stacks (image sequences). The created tiff stacks were imported into Amira (Thermo Fisher Scientific, version 6.0.0), a software for visual data analysis (Stalling et al., 2005), and 3D bone surface models were created using the software's segmentation editor. The number of polygons was reduced to 1.000.000 consistent for all specimens. For PH, high-resolution images were taken using a Canon EOS 1200D digital camera with 18 -55 mm standard zoom lens. Specimens were individually fixed to a flat surface using modelling clay and photos were taken

from all around the specimen. Afterwards, the vertebra was turned upside-down and the process was repeated. The images (in total ca. 70 images per specimen) were uploaded in Agisoft Metashape (version 1.5.2), an image-based 3D modelling software creating 3D objects from still images (Reljić et al., 2019). Using the commands 'align photos', 'build dense cloud', and 'build mesh', surface models were generated. The two resulting models (e.g., top and bottom aspects of the vertebra) were loaded into MeshLab (version 1.3.4 beta), an open source software for processing triangular meshes (Cignioni et al., 2008) and merged using the 'alignment' function. Unfortunately, some of the PH models are unscaled (see table 1). The 3D surface models are provided in .ply format, and can therefore be opened with a wide range of freeware''.

ACKNOWLEDGEMENTS

JAN was supported by the German Research Foundation (grant number EXC 2025). We are indebted to the following curators who provided access to scientific collections: Dr. Irina Ruf (Naturmuseum Senckenberg, Frankfurt, Germany), Dr. Eva Bärmann (Zoologisches Forschungsmuseum König, Bonn, Germany), Dr. Stefan Merker (Staatliches Museum für Naturkunde, Stuttgart, Germany), Christiane Funk (Museum für Naturkunde, Berlin, Germany), Dr. Anneke van Heteren (Zoologische Staatssammlung, Munich, Germany). One giraffe specimen was made available by the Koninklijke Maatschappij voor Dierkunde Antwerpen (KMDA), Centre for Research and Conservation (CRC), Belgium. The fossil specimens of Sivatherium were shared by Dr. John Hutchinson (Royal Veterinary College, Hatfield, United Kingdom.

BIBLIOGRAPHY

Cignioni, M. J., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F. & Ranzuglia, G. 2008. Meshlab: an open-source mesh processing tool. Eurographics Italian chapter conference, 129-136.

Figure 1. Overview of the C7/T1 pairs of vertebrae constituting the cervicothoracic transition in 38 certartiodactyl species from a lateral perspective (cranial to the left). Images scaled to similar size of vertebral bodies. Note: The entire 3D dataset published here contains additional vertebrae.

- Müller, M. A., Merten L. J. F., Böhmer C., Nyakatura, J. A. 2021. Pushing the boundary? Testing the 'functional elongation hypothesis' of the giraffe's neck. Evolution.https://doi.org/10. 1111/evo.14171
- Reljić, I., Dunder, I. & Seljan, S. 2019. Photogrammetric 3D Scanning of Physical Objects: Tools and Workflow. TEM Journal, 8:2, 383-388.
- Schindelin, J. Aarganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B. & Tinevez, J. 2012. Fiji: an open source platform for biological-image analysis. Nature Methods, 9, 676-682. https://doi.org/10.1038/nmeth.2019
- Schneider, C., Rasband, W. & Eliceiri, K. 2012. NIH Image to ImageJ: 25 years of Image Analysis. Nature Methods, 9, 671-675. https://doi.org/10.1038/nmeth.2089
- Stalling, D., Westerhoff, M. & Hege, H.-C. 2005. Amira: A highly interactive system for visual data analysis. The visualization handbook 38:749-67. https://doi.org/10.1016/B978-012387582-2/50040-X

Inv nr.	Taxon	Description	Method	Sex	Origin
	Giraffidae				5
ZMB 66393	Giraffa camelopardalis	C7-T1	СТ	indet.	Wild caught, Namibia
ZSM 1967/17	Giraffa camelopardalis	C7-T1	СТ	М	indet.
ZSM 1981/19	Giraffa camelopardalis	C3-T2	СТ	М	indet.
KMDA M-10861	Giraffa camelopardalis	C3-T2	LS	F	Zoo Belfast/Antwerp
SMF 84214	Giraffa camelopardalis	C7-T1	PH	М	Wild caught, Kenva
SMF 78299	Giraffa camelopardalis	C7-T1	PH*	F	Zoo Kronberg
SMF o. N	Giraffa camelopardalis	C7-T1	PH*	indet.	indet.
SMNS 19138	Giraffa camelopardalis	C7-T1	PH*	F	Wild caught, Tanzania
ZMB 62086	Okapia johnstoni	C3-T2	СТ	indet.	indet.
ZMB 70325	Okapia johnstoni	C3-T2	СТ	indet.	indet.
NHMUK 15707	<i>†Sivatherium giganteum</i>	C7	PH*	indet.	Nepal
NHMUK 15297	<i>†Sivatherium giganteum</i>	T1	PH*	indet.	Nepal
	Cervidae				1
ZMB 47502	Cervus elaphus	C3-T2	СТ	indet.	indet.
SMF 1450	Axis axis	C7-T1	CT	F	indet.
SMF 4368	Cervus nippon	C7-T1	CT		SMF. Frankfurt, Germany
SMF 79852	Capreolus capreolus	C7-T1	CT	F	Wild caught, Germany
ZFMK 67.237	Capreolus capreolus	C7-T1	CT	F	Wild caught, Germany
SMF 92954	Muntiacus reevesi	C7-T1	CT	М	indet.
SMF 92332	Muntiacus reevesi	C7-T1	CT	indet.	Taiwan
SMF 35549	Alces alces	C7-T1	CT	М	Zoo Taunus
ZFMK 86.125	Dama dama	C7-T1	СТ	F	Wild caught, Germany
	Bovidae			-	
ZMB 78829	Antilope cervicapra	C3-T2	СТ	indet.	indet.
SMNS 2998	Bison bonasus	C7-T1	PH*	indet.	Wild caught, Poland
SMF 74435	Nanger dama	C7-T1	СТ	M	Zoo Frankfurt
SMF 23747	Litocranius walleri	C7-T1	CT	F	Zoo Frankfurt
SMF 23749	Litocranius walleri	C7-T1	СТ	F	Zoo Frankfurt
SMF 95875	Tragelaphus eurycerus	C7-T1	CT	F	indet.
SMF 64934	Bos javanicus	C7-T1	CT	M	indet.
ZFMK 1982.338	Ovis aries musimon	C7-T1	СТ	F	indet.
ZFMK 72.367	Rupicapra rupicapra	C7-T1	СТ	M	Wild caught, Austria
ZFMK 2001.278	Aenvceros melampus	C7-T1	СТ	М	Wild caught, Zimbabwe
SMNS 4443	Kobus ellipsiprvmnus	C7-T1	CT	F	Wild caught, Tanzania
SMNS 15292	Sylvicapra grimmia	C7-T1	CT	F	Wild caught, Ethiopia
SMNS 7347	Syncerus caffer	C7-T1	PH*	indet.	Ethiopia
SMNS 5796	Procapra gutturosa	C7-T1	СТ	F	Wild caught, China
SMNS 21617	Damaliscus pygargus	C7-T1	СТ	F	Zoo Stuttgart
SMNS 4432	Madoaua kirkii	C7-T1	CT	M	Wild caught, Tanzania
SMNS 2054	Bubalus mindorensis	C7-T1	PH*	indet.	Wild caught, Philippines
SMNS 51328	Capra hircus dom.	C7-T1	СТ	М	Germany
SMNS 4442	Connochaetes taurinus	C7-T1	PH*	Μ	Wild caught, Tanzania
	Antilocapridae	0, 11			The Caught, Tanzania
ZSM 1964/218	Antilocapra americana	C3-T2	СТ	М	indet.
ZMB 77281	Antilocapra americana	C7-T1	CT	indet.	Zoo Hannover
	Moschidae				
ZMB 62080	Moschus moschiferus	C3-T2	СТ	М	Zoo Berlin
ZMB 60367	Moschus moschiferus	C7-T1	CT	F	Wild caught, Russia
ZMB 51830	Moschus moschiferus	C7-T1	CT	indet.	Zoo Berlin
	Tragulidae	27 22	~.		
SMF 82179	Tragulus javanicus	C7-T1	СТ	F	indet.
ZMB 86222	Tragulus javanicus	C7-T1	CT	М	Zoo Berlin
ZMB o. N.	Tragulus sp.	C7-T1	СТ	indet.	MNB, Berlin

ZMB 71071	Hyemoschus aquaticus	C7-T1	СТ	indet.	Wild caught, Cameroon
ZMB 103235	Hyemoschus aquaticus	C7-T1	CT	indet.	indet.
	Camelidae				
SMF 94752	Vicugna vicugna	C7-T1	CT	F	Zoo Frankfurt
SMF 70473	Camelus dromedarius	C7-T1	PH*	indet.	Zoo Darmstadt
SMF 25542	Camelus bactrianus	C7-T1	PH*	Μ	Zoo Frankfurt
SMNS 31175	Lama glama	C7-T1	СТ	indet.	Zoo Hohenheim
SMNS 46255	Vicugna pacos	C7-T1	CT	Μ	Zoo Stuttgart
SMNS 7349	Vicugna pacos	C7-T1	CT	М	Zoo Stuttgart

Table 1. Complete specimen list. Institutions housing abbreviated collections sampled: KMDA, Koninklijke Maatschappij voor Dierkunde, Antwerp, Belgium; NHMUK, Natural History Museum, London, United Kingdom; SMF, Naturmuseum Senckenberg, Frankfurt, Germany; SMNS, Staatliches Museum für Naturkunde, Stuttgart, Germany; ZMB, Museum für Naturkunde, Berlin, Germany; ZFMK, Zoologisches Forschungsmuseum König, Bonn, Germany; ZSM, Zoologische Staatssammlung, Munich, Germany. CT, computed tomography; LS, laser scanning; PH, photogrammetry; M, male; F, female. *: unscaled photogrammetric models.