

3D models related to the publication: Morphogenesis of the liver during the human embryonic period

Hirose Ayumi¹, Nakashima Takashi¹, Shiraki Naoto¹, Yamada Shigehito^{1,2}, Uwabe Chigako², Kose Katsumi³, Takakuwa Tetsuya¹*

¹Human Health Science, Graduate School of Medicine, Kyoto University, Sakyo-ku Shogoin Kawahara-cho 53, Kyoto, 606-8507, Japan

² Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Sakyo-ku Yoshida-Konoe-cho Kyoto, 606-8501, Japan ³ Institute of Applied Physics, University of Tsukuba, Tenoudai 1-1-1, Tsukuba, Ibaragi, 305-8573, Japan

*Corresponding author: tez@hs.med.kyoto-u.ac.jp

Abstract

The present 3D Dataset contains the 3D models analyzed in: Hirose, A., Nakashima, T., Yamada, S., Uwabe, C., Kose, K., Takakuwa, T. 2012. Embryonic liver morphology and morphometry by magnetic resonance microscopic imaging. Anat Rec (Hoboken) 295, 51-59. doi: 10.1002/ar.21496

Keywords: human embryo, human liver, magnetic resonance imaging, three-dimensional reconstruction

Submitted:2016-02-15, published online:2016-03-17. doi: 10.18563/m3.1.4.e1

Figure 1. Representative images of the liver at Carnegie stage (CS) 14, CS 17, CS 20, and CS 23. IVC; inferior vena cava, PV; portal vein, UV; umbilical vein

INTRODUCTION

The morphogenesis of the human liver was visualized using images derived from human embryo specimens between Carnegie stage (CS) 14 and CS 23 from the Kyoto Collection, which were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. (see Table 1).

METHODS

Well-preserved human embryos between Carnegie stage (CS) 14 and the CS 23 (approximately 5–8 weeks after fertilization) were selected from Kyoto Collection for MR microscopic imaging (Nishimura et al, 1968; Shiota et al, 2007; O'Rahilly & Müller, 1987). The MR images of the embryos were ac-

quired using a super-parallel MR microscope developed with a 2.35 T horizontal bore (40 cm) superconducting magnet (Matsuda et al., 2007). MRI data from selected embryos were analyzed precisely as serial 2D and reconstructed 3D images. The structure of the stomach was reconstructed in all samples using OsiriXTM software version 3.7.1 (Pixmeo SARL, Geneva, Switzerland). The 3D surface models were then processed with ISE-MeshTools (Lebrun, 2014); each model was orientated and labelled using this software. All labels were provided in .flg format. The 3D surface models are also provided in .ply format, and can therefore be opened with a wider range of freeware. This study was approved by The Committee of Medical Ethics of Kyoto University Graduate School of Medicine, Kyoto, Japan (E986). Representative images of 3D models of livers are shown in Fig. 1.

ACKNOWLEDGEMENTS

This study was supported by Grant Nos. 25461642, 24119002, 26220004, 15H01119, 15K08134, 15H05270, 15H01121, and 15K15014 from the Japan Society for the Promotion of Science.

BIBLIOGRAPHY

Hirose, A., Nakashima, T., Yamada, S., Uwabe, C., Kose, K., Takakuwa, T. 2012. Embryonic liver morphology and morphometry by magnetic resonance microscopic imaging. Anat Rec (Hoboken) 295, 51-59. doi: 10.1002/ar.21496

Lebrun, R., 2014. ISE-MeshTools, a 3D interactive fossil reconstruction freeware. 12th Annual Meeting of EAVP, Torino, Italy.

Model IDs	Taxon	Developmental stage (Carnegie stage (CS))
M3#64_KC-CS14LIV1387	Homo sapiens	CS 14
M3#65_KC-CS15LIV5074	Homo sapiens	CS 15
M3#66_KC-CS16LIV2578	Homo sapiens	CS 16
M3#67_KC-CS17LIV17832	Homo sapiens	CS 17
M3#68_KC-CS18LIV21124	Homo sapiens	CS 18
M3#69_KC-CS19LIV14353	Homo sapiens	CS 19
M3#70_KC-CS20LIV20701	Homo sapiens	CS 20
M3#71_KC-CS21LIV25858	Homo sapiens	CS 21
M3#72_KC-CS22LIV22226	Homo sapiens	CS 22
M3#73_KC-CS23LIV25704	Homo sapiens	CS 23
	Table 1. List of models	

Matsuda, Y., Ono, S., Otake, Y., Handa, S., Kose, K., Haishi, T., Yamada, S., Uwabe, C., Shiota, K., 2007. Imaging of a large collection of human embryo using a super-parallel MR microscope. Magn Reson Med Sci 6, 139-146. doi: 10.2463/mrms.6.139

Nishimura, H., Takano, K., Tanimura, T., Yasuda, M., 1968. Normal and abnormal development of human embryos: first report of the analysis of 1,213 intact embryos. Teratology 1, 281-290. doi: 10.1002/tera.1420010306

O'Rahilly, R., Müller, F., 1987. Developmental stages in human embryos: including a revision of Streeter's Horizons and a survey of the Carnegie Collection. Washington, D.C.: Carnegie Institution of Washington.

Shiota, K., Yamada, S., Nakatsu-Komatsu, T., Uwabe, C., Kose, K., Matsuda, Y., Haishi, T., Mizuta, S., Matsuda, T., 2007. Visualization of human prenatal development by magnetic resonance imaging (MRI). Am J Med Genet A 143A, 3121-3126. doi: 10.1002/ajmg.a.31994