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Abstract
This contribution contains 3D models of left and right house mouse (Mus musculus domesticus) inner ears analyzed
in Renaud et al. (2024). The studied mice belong to four groups: wild-trapped mice, wild-derived lab offspring,
a typical laboratory strain (Swiss) and hybrids between wild-derived and Swiss mice. They have been analyzed
to assess the impact of mobility reduction on inner ear morphology, including patterns of divergence, levels of
inter-individual variance (disparity) and intra-individual variance (fluctuating asymmetry).
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INTRODUCTION

The semicircular canals (SSC) of the inner ear are involved in
balance and velocity control (Malinzak et al., 2012; Perier et
al., 2016). Release of selection in slow-moving animals has
been argued to lead to morphological divergence and increased
inter-individual variation (Billet et al., 2012). Such effects could
be tested using the house mouse (Mus musculus) as a model. In
its natural habitat, the house mouse moves in a tridimensional
space where efficient balance is required. In contrast, labora-
tory strains evolved since about one century in cages severely
restricting their ability to move, possibly releasing selection
on the inner ear morphology. The role of plastic response to
mobility reduction as a factor of between-population divergence
is questioned by the early development of the inner ear, that
achieves its adult morphology before birth (Costeur et al., 2017).
However, maternal movements during pregnancy can modulate
the development of the inner ear (Ronca et al., 2008). This con-
tribution presents 3D models of left and right inner ears for 74
specimens of Western European house mice (Mus musculus do-
mesticus) belonging to four groups, chosen to assess the effects
of mobility reduction at different scales: (1) Three populations
of wild mice trapped in commensal habitats in France (surround-
ings of Lyon, South-Western France, and Brittany); (2) their
second-generation laboratory offspring, to assess plastic effects
related to breeding conditions; (3) a standard laboratory outbred
strain (Swiss) that evolved for many generations in a regime of
mobility reduction; and (4) hybrids between wild offspring and
Swiss mice. For each specimen, the left and right inner ears

were segmented and the morphology of the semicircular canals
was quantified using a set of 3D landmarks and semi-landmarks
analyzed using geometric morphometric protocols. Levels of
inter-population, inter-individual (disparity) and intra-individual
(asymmetry) variation were compared (Renaud et al. 2024). All
wild mice shared a similar inner ear morphology, in contrast
to the important divergence of the Swiss strain (Fig.1). The
release of selection in the laboratory strain obviously allowed
for an important and rapid drift, leading to a morphology char-
acterized by an expansion of the posterior SSC relative to the
anterior SSC. The resulting unbalanced inner ear morphology
is reminiscent of the one observed in domestic pigs (Evin et al.,
2022), suggesting a common response to mobility reduction in
captivity. The lab-bred offspring of wild mice also differed from
their wild relatives, suggesting that plastic response related to
maternal locomotory behavior can modulate the development of
the inner ear, potentially inducing fine variations at an ecolog-
ical time scale. The signature observed in lab-bred wild mice
and the lab strain was however not congruent, suggesting that
plasticity did not participate to the divergence of the laboratory
strain. Contrary to the expectation, levels of inter-individual
variation (disparity) were slightly higher in wild than in labora-
tory mice, possibly due to the higher levels of genetic variance.
Differences in intra-individual variance (fluctuating asymmetry)
were detected, with the laboratory strain occasionally displaying
higher asymmetry scores than its wild relatives, possibly due to
a release of selection in the laboratory strain.
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Inv nr. Sex Weight Collection
Bal02 indet 7.6 LBBE
Bal04 F 21.7 LBBE
Bal06 M 17.9 LBBE
Bal08 F 17.25 LBBE
Bal11 M 10.85 LBBE
Bal12 F 11.7 LBBE
Bal15 M 11.16 LBBE
Bal16 M 15.87 LBBE
Bal17 M 7.9 LBBE
Bal18 F 9.41 LBBE
Bal19 M 16.32 LBBE
Bal20 M 12.65 LBBE
Bal21 M 17.6 LBBE
Bal22 F 13.89 LBBE
Bal23 F 15.37 LBBE
Bal24 M 14.36 LBBE
Bal25 M 9.75 LBBE
Balan LAB 035 F 14.65 LBBE
Balan LAB 046 F 16 LBBE
Balan LAB 054 F 17.41 LBBE
Balan LAB 056 F 16.28 LBBE
Balan LAB 082 M 25.8 LBBE
Balan LAB 086 M 24.03 LBBE
Balan LAB 092 M 20.99 LBBE
Balan LAB 319 F 18.53 LBBE
Balan LAB 325 M 22.46 LBBE
Balan LAB 329 M 20.98 LBBE
Balan LAB 330 M 23.55 LBBE
Balan LAB F2b F 16.05 LBBE
Balan LAB BB3weeks indet 9.03 LBBE
BAL F1 30x17 27j M 10.08 LBBE
BAL F1 167 48j M 21.86 LBBE
BAL F1 188 32j M 11.63 LBBE
BAL F1 192 28j M 13.36 LBBE
BAL F1 194 46j M 13.89 LBBE
BAL F1 196 44j F 14.03 LBBE
BAL F2 40x56 24j M 9.23 LBBE
BAL F2 47x61 22j F 10.75 LBBE
Gardouch 3419 M 13.3 CBGP
Gardouch 3432 F 13.4 CBGP
Gardouch 3437 M 15.3 CBGP
Gardouch 3439 M 12.4 CBGP
Gardouch 3450 M 17.4 CBGP
Gardouch 3453 F 14.2 CBGP
Gardouch 3459 M 12.9 CBGP
Gardouch 3462 M 12.3 CBGP
Tourch 7819 F 12 CBGP
Tourch 7821 F 11 CBGP
Tourch 7839 M 9 CBGP
Tourch 7873 M 13 CBGP
Tourch 7877 F 11 CBGP
Tourch 7922 M 15 CBGP
Tourch 7923 F 16 CBGP
Tourch 7925 M 13 CBGP

Tourch 7927 F 9 CBGP
Tourch 7932 M 9 CBGP
SW0ter M 34.43 LBBE
SW343 M 37.46 LBBE
SW1 M 44.34 LBBE
SW2 M 39.9 LBBE
SW5 M 41.55 LBBE
SWF3 F 41.5 LBBE
SW342 indet 40.31 LBBE
SW341 indet 39.56 LBBE
SW339 indet 39.43 LBBE
SWF4 F 38.47 LBBE
SW0bis 350 indet 27.73 LBBE
SW0 348 indet 28.1 LBBE
SW347 indet 29.49 LBBE
SW345 indet 32.8 LBBE
hyb 125xSW 01 F LBBE
hyb 125xSW 02 F LBBE
hyb SWx126 01 F LBBE
hyb SWx126 02 F LBBE

Table 1. List of models of pairs of bony labyrinth of Mus musculus
domesticus.

METHODS
Skulls of wild mice from Balan, Tourch, Gardouch, most labo-
ratory offspring and five Swiss were scanned at a cubic voxel
resolution of 12 µm on the General Electric (GE) Nanotom
microtomograph (µCT) of the AniRA-ImmOs platform of the
SFR Biosciences, Ecole Normale Supérieure (Lyon, France).
The dataset was complemented by one Balan Wild scanned
at 12 µm, eight Balan Lab scanned at 17 µm, and nine Swiss
scanned at 19 µm at the Mateis laboratory (INSA, Lyon, France),
using a similar equipment. The bony labyrinths were subse-
quently segmented using a two-step approach (Evin et al., 2022).
A pre-segmentation of one slice every 5-10 slices was per-
formed using Avizo 2021.1 (Thermo Fisher Scientific). The
Biomedisa smart interpolation tool (Lösel et al., 2020) was
used to complement this pre-segmentation. The extracted left
and right bony labyrinths (see Table 1) were then exported as
surface PLY files. Mice from Balan, their lab-bred offspring,
the Swiss mice and the hybrids are stored at the LBBE as
laboratory collection. Mice from Gardouch and Tourch are
stored at the Centre de Biologie pour la Gestion des Popula-
tion, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD,
Montpellier, France “CBGP - Small Mammal Collection”, https:
//doi.org/10.15454/WWNUPO.
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Figure 1. Inner ear morphospace and mean shapes of main groups. Above, morphospace corresponding to a Principal Component Analysis
(PCA) on the aligned coordinates. Convex hulls enclose each group, coded by colosr. Below left: Example of the extracted surface of a left inner
ear (Balan Wild #15). Below right: mean inner ear shape of Balan wild (cyan), Balan lab offspring (deep blue) and Swiss strain (red).
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