3D models related to the publication: Morphological and functional changes in the vertebral column with increasing aquatic adaptation in crocodylomorphs

MOLNAR J. L.*, PIERCE S. E., BHULLAR B.-A. S., TURNER A. A., HUTCHINSON J. R.*

* Howard University College of Medicine, Department of Anatomy, Washington, DC 20059
* Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
* Yale University, Geology & Geophysics, New Haven, CT 06520
* Stonybrook University, Department of Anatomical Sciences, Stony Brook, NY 11794
* Structure & Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, United Kingdom

* corresponding author: julia.molnar4@gmail.com


Key words: crocodylomorph, vertebrae, axial skeleton, stiffness, range of motion, aquatic adaptation

Submitted 15.10.2015, Accepted 26.10.2015. doi: 10.18563/m3.1.3.e5
© Copyright Molnar J. L. 2015

SPECIMEN LIST

<table>
<thead>
<tr>
<th>M3 id(s) of 3D model(s)</th>
<th>Species</th>
<th>Repository institution</th>
<th>3D data acquisition institution</th>
<th>3D data acquisition method</th>
<th>3D Data acquisition facility model</th>
<th>Voxel size of original 3D dataset (mm)</th>
<th>3D data acquisition operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3#45_NHM-PV R 7562</td>
<td>Terrestrisuchus gracilis</td>
<td>Natural History Museum, London, UK</td>
<td>Natural History Museum, London, UK</td>
<td>X-ray µCT</td>
<td>Metris X-Tek HMX ST 225</td>
<td>0.06x0.06x0.06</td>
<td>F. Ahmed, J. Molnar</td>
</tr>
<tr>
<td>M3#44_AMNH-VP 3024</td>
<td>Protosuchus richardsoni</td>
<td>American Museum of Natural History, New York, USA</td>
<td>Stonybrook University, New York, USA</td>
<td>X-ray CT</td>
<td>LightSpeed VCT</td>
<td>0.39x0.39x0.39</td>
<td>A. Turner</td>
</tr>
<tr>
<td>M3#46_NHM-PV OR 32598</td>
<td>Pelagosaurus typus</td>
<td>Natural History Museum, London, UK</td>
<td>Natural History Museum, London, UK</td>
<td>X-ray µCT</td>
<td>Metris X-Tek HMX ST 225</td>
<td>0.08x0.08x0.08</td>
<td>F. Ahmed, J. Molnar</td>
</tr>
<tr>
<td>M3#47_NHM-PV R 2054</td>
<td>Metriorhynchus moreli</td>
<td>Natural History Museum, London, UK</td>
<td>Royal Veterinary College, London, UK</td>
<td>X-ray CT</td>
<td>GE Lightspeed</td>
<td>0.36x0.36x0.36</td>
<td>JR. Hutchinson</td>
</tr>
<tr>
<td>M3#48_FNC0</td>
<td>Crocodylus niloticus</td>
<td>Royal Veterinary College, London, UK</td>
<td>Royal Veterinary College, London, UK</td>
<td>X-ray CT</td>
<td>GE Lightspeed</td>
<td>0.41x0.41x0.41</td>
<td>JR. Hutchinson</td>
</tr>
</tbody>
</table>

J. Molnar is the author of all derived 3D surface models
METHODS

The 3D surfaces were extracted semi-automatically within Materialise Mimics (Materialise Inc. (www.materialise.com/mimics); Leeuwen, Belgium) using the segmentation threshold selection tool. The 3D surface models are provided in .stl format, and can therefore be opened with a wide range of freeware.

ACKNOWLEDGEMENTS

Grant sponsor: Natural Environment Research Council (NERC). Grant numbers: NE/G005877/1 and NE/K004751/1

BIBLIOGRAPHY