3D models of Arthropleura sp. from the Montceau-les-Mines Lagerstätte
3D models of Peradectes crocheti from Palette (early Eocene, Provence)
The specimens of Speothos pacivorus
3D GM dataset of bird skeletal variation
Skeletal embryonic development in the catshark
Bony connexions of the petrosal bone of extant hippos
bony labyrinth (11) , inner ear (10) , Eocene (8) , South America (8) , Paleobiogeography (7) , skull (7) , phylogeny (6)
Lionel Hautier (20) , Maëva Judith Orliac (19) , Laurent Marivaux (13) , Bastien Mennecart (12) , Pierre-Olivier Antoine (11) , Leonardo Kerber (10) , Renaud Lebrun (9)
MorphoMuseuM Volume 08, issue 02
<< prev. article next article >>
3D dataset3D models related to the publication: Skull sutures and cranial mechanics in the Permian reptile Captorhinus aguti and the evolution of the temporal region in early amniotes
|
M3#965Segmented cranial bone surfaces of OMNH 44816 Type: "3D_surfaces"doi: 10.18563/m3.sf.965 state:published |
Download 3D surface file |
Abel P., Pommery Y., Ford D. P., Koyabu D., and Werneburg I. 2022. Skull sutures and cranial mechanics in the Permian reptile Captorhinus aguti and the evolution of the temporal region in early amniotes. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2022.841784
Abel P., Werneburg I. 2021. Morphology of the temporal skull region in tetrapods: Research history, functional explanations, and a new comprehensive classification scheme. Biological Reviews, 96 (5), 2229–2257. https://doi.org/10.1111/brv.12751
Cope E. D. 1882. Third contribution to the history of the Vertebrata of the Permian formation of Texas. Proceedings of the American Philosophical Society 20 (112), 447–461. https://www.jstor.org/stable/982692
Ford D. P., Benson R. B. J. 2020. The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae. Nature Ecology and Evolution 4, 57–65. https://doi.org/10.1038/s41559-019-1047-3
Frazzetta T. H. 1968. Adaptive problems and possibilities in the temporal fenestration of tetrapod skulls. Journal of Morphology 125 (2), 145–157. https://doi.org/10.1002/jmor.1051250203
Lebrun R. 2018. MorphoDig, an open-source 3D freeware dedicated to biology, in: The 5th International Palaeontological Congress. (Paris). https://morphomuseum.com/morphodig
Tarsitano S. F., Oelofsen B., Frey E., Riess J. 2001. The origin of temporal fenestrae. South African Journal of Science 97 (7-8), 334–336. https://hdl.handle.net/10520/EJC97338
Werneburg I. 2019. Morphofunctional categories and ontogenetic origin of temporal skull openings in amniotes. Frontiers in Earth Science, Section Paleontology 7(13), 1-7, https://doi.org/10.3389/feart.2019.00013
Werneburg I., Abel P. 2022. Modelling skull network integrity at the dawn of amniote diversification with considerations on functional morphology and fossil jaw muscle reconstructions. Frontiers in Ecology and Evolution. Sections Paleontology + Evolutionary Developmental Biology 9, 799637. https://doi.org/10.3389/fevo.2021.799637
Ingmar Werneburg and Holger Preuschoft (2024). Evolution of the temporal skull openings in land vertebrates: A hypothetical framework on the basis of biomechanics. The Anatomical Record. https://doi.org/10.1002/ar.25371