Issue


2021-03
Volume 07, issue 01
<< prev. next >>
ISSN: 2274-0422

Article Management

You must log in to submit or manage articles.

You do not have an account yet ? Sign up.

MorphoMuseuM Volume 07, issue 01
<< prev. article next article >>

Original article

A 3D geometric morphometric dataset quantifying skeletal variation in birds
Alexander Bjarnason Logo and Roger Benson Logo
Published online: 09/02/2021

Keywords: birds; geometric morphometrics; macroevolution; Morphology; skeleton

https://doi.org/10.18563/journal.m3.125

References: 86
Cited by: 15

Cite this article: Alexander Bjarnason and Roger Benson, 2021. A 3D geometric morphometric dataset quantifying skeletal variation in birds. MorphoMuseuM 7:e125. doi: 10.18563/journal.m3.125

Export citation

Abstract

Macroevolution is integral to understanding the patterns of the diversification of life. As the life sciences increasingly use big data approaches, large multivariate datasets are required to test fundamental macroevolutionary hypotheses. In vertebrate evolution, large datasets have been created to quantify morphological variation, largely focusing on particular areas of the skeleton. We provide a landmarking protocol to quantify morphological variation in skeletal elements across the head, trunk, hindlimb and forelimb using 3-dimensional landmarks and semilandmarks, and present a large pan-skeletal database of bird morphology for 149 taxa across avian phylogeny using CT scan data. This large collection of 3D models and geometric morphometric data is open access and can be used in the future for new research, teaching and outreach. The 3D models and CT scans of the 149 specimens related to this project can be downloaded at MorphoSource (https://www.morphosource.org/projects/00000C420

Specimens and 3D Data

Menura novaehollandiae FMNH 336751 View specimen

M3#561

3D model of the left carpometacarpus of the superb lyrebird, Menura novaehollandia (displayed as a mirror image in the 3DHOP viewer).

Type: "3D_surfaces"

doi: 10.18563/m3.sf.561   state:published




Download 3D surface file

M3#562

3D model of the mandible of the superb lyrebird, Menura novaehollandiae.

Type: "3D_surfaces"

doi: 10.18563/m3.sf.562   state:published




Download 3D surface file

M3#563

3D model of the right coracoid of the superb lyrebird, Menura novaehollandiae.

Type: "3D_surfaces"

doi: 10.18563/m3.sf.563   state:published




Download 3D surface file

M3#564

3D model of the right scapula of the superb lyrebird, Menura novaehollandiae.

Type: "3D_surfaces"

doi: 10.18563/m3.sf.564   state:published




Download 3D surface file

M3#565

3D model of the right tarsometatarsus of the superb lyrebird, Menura novaehollandiae.

Type: "3D_surfaces"

doi: 10.18563/m3.sf.565   state:published




Download 3D surface file

M3#566

3D model of the sternum of the superb lyrebird, Menura novaehollandiae.

Type: "3D_surfaces"

doi: 10.18563/m3.sf.566   state:published




Download 3D surface file

M3#567

3D model of the left femur of the superb lyrebird, Menura novaehollandiae (displayed as a mirror image in the 3DHOP viewer).

Type: "3D_surfaces"

doi: 10.18563/m3.sf.567   state:published




Download 3D surface file

M3#568

3D model of the skull of the superb lyrebird, Menura novaehollandiae.

Type: "3D_surfaces"

doi: 10.18563/m3.sf.568   state:published




Download 3D surface file

M3#569

3D model of the left humerus of the superb lyrebird, Menura novaehollandiae (displayed as a mirror image in the 3DHOP viewer).

Type: "3D_surfaces"

doi: 10.18563/m3.sf.569   state:published




Download 3D surface file

M3#570

3D model of the synsacrum of the superb lyrebird, Menura novaehollandiae.

Type: "3D_surfaces"

doi: 10.18563/m3.sf.570   state:published




Download 3D surface file

M3#571

3D model of the left radius of the superb lyrebird, Menura novaehollandiae (displayed as a mirror image in the 3DHOP viewer).

Type: "3D_surfaces"

doi: 10.18563/m3.sf.571   state:published




Download 3D surface file

M3#572

3D model of the left tibiotarsus of the superb lyrebird, Menura novaehollandiae (displayed as a mirror image in the 3DHOP viewer).

Type: "3D_surfaces"

doi: 10.18563/m3.sf.572   state:published




Download 3D surface file

M3#573

3D model of the left ulna of the superb lyrebird, Menura novaehollandiae (displayed as a mirror image in the 3DHOP viewer).

Type: "3D_surfaces"

doi: 10.18563/m3.sf.573   state:published




Download 3D surface file


 

Published in Volume 07, issue 01 (2021)

References

Adams D.C., Collyer M.L., 2019. Phylogenetic Comparative Methods and the Evolution of Multivariate Phenotypes. Annual Review of Ecology, Evolution, and Systematics 50, 405–425. https://doi.org/10.1146/annurev-ecolsys-110218-024555

Adams D. C., Rohlf F. J., Slice D. E., 2004. Geometric morphometrics: ten years of progress following the ‘revolution.’ Italian Journal of Zoology 71, 5–16. https://doi.org/10.1080/11250000409356545

Adams D. C., Rohlf F. J., Slice D. E., 2013. A field comes of age: geometric morphometrics in the 21st century. Hystrix 24, 7–14. https://doi.org/10.4404/hystrix-24.1-6283

Alroy J., 1998. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280, 731–734. https://doi.org/10.1126/science.280.5364.731

Arbour J.H., Curtis A.A., Santana S.E., 2019. Signatures of echolocation and dietary ecology in the adaptive evolution of skull shape in bats. Nature Communications 10, 1–13. https://doi.org/10.1038/s41467-019-09951-y

Arnold P., Amson E., Fischer M.S., 2017. Differential scaling patterns of vertebrae and the evolution of neck length in mammals. Evolution 71, 1587–1599. https://doi.org/10.1111/evo.13232

Bardua C., Felice R.N., Watanabe A., Fabre A.C., Goswami A., 2019a. A practical guide to sliding and surface semilandmarks in morphometric analyses. Integrative Organismal Biology 1, obz016. https://doi.org/10.1093/iob/obz016

Bardua C., Wilkinson M., Gower D. J., Sherratt E., Goswami A., 2019b. Morphological evolution and modularity of the caecilian skull. BMC Evolutionary Biology 19, 30. https://doi.org/10.1186/s12862-018-1342-7

Bardua C., Fabre A.C., Bon M., Das K., Stanley E. L., Blackburn D. C., Goswami A., 2020. Evolutionary integration of the frog cranium. Evolution 74, 6 . https://doi.org/10.1111/evo.13984

Baumel J. J., Witmer L., 1993. Osteologia; p. 45–132. In: Baumel J.J., King J.E., Breazile J.E., Evans H.E., Vanden Berge J.C., (Eds), Handbook of Avian Anatomy: Nomina Anatomica Avium, 2nd Edition. Nuttall Ornithological Club, Cambridge, pp. 45–132.

Bell E., Andres B., Goswami A., 2011. Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats. Journal of Evolutionary Biology 24, 2586–2599. https://doi.org/10.1111/j.1420-9101.2011.02381.x

Bhullar B.A.S., Marugán-Lobón J., Racimo F., Bever G.S., Rowe T.B., Norell M.A., Abzhanov A., 2012. Birds have paedomorphic dinosaur skulls. Nature 487, 223–226. https://doi.org/10.1038/nature11146

Botelho J. F., Ossa-Fuentes L., Soto-Acuña S., Smith-Paredes D., Nuñez-León D., Salinas-Saavedra M., Ruiz-Flores M., Vargas A.O., 2014. New developmental evidence clarifies the evolution of wrist bones in the dinosaur–bird transition. PLoS Biology 12, e1001957. https://doi.org/10.1371/journal.pbio.1001957

Botton-Divet L., Cornette R., Fabre A.-C., Herrel A., Houssaye A., 2016. Morphological analysis of long bones in semi-aquatic mustelids and their terrestrial relatives. Integrative and Comparative Biology 56, 1298–1309. https://doi.org/10.1093/icb/icw124

Bright J. A., Marugán-Lobón J., Cobb S.N., Rayfield E.J., 2016. The shapes of bird beaks are highly controlled by nondietary factors. Proceedings of the National Academy of Sciences 113, 5352–5357. https://doi.org/10.1073/pnas.1602683113

Cardini, A., 2016. Lost in the other half: improving accuracy in geometric morphometric analyses of one side of bilaterally symmetric structures. Systematic Biology 65, 1096-1106. https://doi.org/10.1093/sysbio/syw043

Cardini, A., 2017. Left, right or both? Estimating and improving accuracy of one‐side‐only geometric morphometric analyses of cranial variation. Journal of Zoological Systematics and Evolutionary Research 55, 1-10. https://doi.org/10.1111/jzs.12144

Cheverud J. M., 1982. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36, 499–516. https://doi.org/10.2307/2408096

Clark Jr G.A., 1993. Anatomia topographica externa. In: Baumel J.J., King J.E., Breazile J.E., Evans H.E., Vanden Berge J.C., (Eds), Handbook of Avian Anatomy: Nomina Anatomica Avium, 2nd Edition. Nuttall Ornithological Club, Cambridge, pp. 7–16.

Coombs E. J., Clavel J., Park T., Churchill M., Goswami A., 2020. Wonky whales: the evolution of cranial asymmetry in cetaceans. BMC Biology 18,1–24. https://doi.org/10.1186/s12915-020-00805-4

Cooney C. R., Bright J.A., Capp E.J.R., Chira A.M., Hughes E.C., Moody C.J.A., Nouri L.O., Varley Z.K., Thomas G.H., 2017. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347. https://doi.org/10.1038/nature21074

Cooper N., Purvis A., 2010. Body size evolution in mammals: complexity in tempo and mode. The American Naturalist 175, 727–738. https://doi.org/10.1086/652466

Corfield J. R., Price K., Iwaniuk A.N., Gutierrez-Ibañez C., Birkhead T., Wylie D.R., 2015. Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny. Frontiers in Neuroanatomy 9, 102. https://doi.org/10.3389/fnana.2015.00102

Davies T. G., et al. 2017. Open data and digital morphology. Proceedings of the Royal Society B: Biological Sciences 284, 20170194. https://doi.org/10.1098/rspb.2017.0194

Dececchi T.A., Larsson H.C.E., 2013. Body and limb size dissociation at the origin of birds: uncoupling allometric constraints across a macroevolutionary transition. Evolution 67, 2741–2752. https://doi.org/10.1111/evo.12150

Etienne R.S., Haegeman B., 2012. A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence. The American Naturalist 180, E75–E89. https://doi.org/10.1086/667574

Ezard T.H.G., Aze T., Pearson P.N., Purvis A., 2011. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351. https://doi.org/10.1126/science.1203060

Ezard T.H.G., Purvis A., 2016. Environmental changes define ecological limits to species richness and reveal the mode of macroevolutionary competition. Ecology Letters, 19, 899–906. https://doi.org/10.1111/ele.12626

Fabre A.-C., Bardua C., Bon M., Clavel J., Felice R.N., Streicher J.W., Bonnel J., Stanley E. L., Blackburn D. C., Goswami A., 2020. Metamorphosis shapes cranial diversity and rate of evolution in salamanders. Nature Ecology & Evolution 4, 1129–1140. https://doi.org/10.1038/s41559-020-1225-3

Fabre A.-C., Bickford D., Segall M., Herrel A., 2016. The impact of diet, habitat use, and behaviour on head shape evolution in homalopsid snakes. Biological Journal of the Linnean Society 118, 634–647. https://doi.org/10.1111/bij.12753

Fabre A.-C., Goswami A., Peigné S., Cornette R., 2014. Morphological integration in the forelimb of musteloid carnivorans. Journal of Anatomy 225, 19–30. https://doi.org/10.1111/joa.12194

Felice R.N., Goswami A., 2018. Developmental origins of mosaic evolution in the avian cranium. Proceedings of the National Academy of Sciences 115, 555–560. https://doi.org/10.1073/pnas.1716437115

Felice R.N., Tobias J.A., Pigot A.L., Goswami A., 2019. Dietary niche and the evolution of cranial morphology in birds. Proceedings of the Royal Society B 286, 20182677. https://doi.org/10.1073/pnas.1716437115

Garamszegi L.Z., 2014. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice. Springer. https://doi.org/10.1007/978-3-662-43550-2

Gingerich P., 1983. Rates of evolution: effects of time and temporal scaling. Science 222, 159–162. https://doi.org/10.1126/science.222.4620.159

Goswami,A., 2006. Cranial modularity shifts during mammalian evolution. The American Naturalist 168, 270–280. https://doi.org/10.1086/505758

Goswami A., Watanabe A., Felice R.N., Bardua C., Fabre A.C., Polly P.D., 2019. High-density morphometric analysis of shape and integration: the good, the bad, and the not-really-a-problem. Integrative and Comparative Biology 59, 669–683. https://doi.org/10.1093/icb/icz120

Gower J.C., 1975. Generalized procrustes analysis. Psychometrika 40, 33–51. https://doi.org/10.1007/BF02291478

Hanot P., Herrel A., Guintard C., Cornette R., 2018. The impact of artificial selection on morphological integration in the appendicular skeleton of domestic horses. Journal of Anatomy 232, 657–673. https://doi.org/10.1111/joa.12772

Hansen T.F., 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution 51, 1341–1351. https://doi.org/10.1111/j.1558-5646.1997.tb01457.x

Hansen T.F. 2012. Adaptive landscapes and macroevolutionary dynamics. In: Svennson E., Calsbeek R. (Eds), The Adaptive Landscape in Evolutionary Biology. Oxford University Press, Oxford, pp. 205-226. https://doi.org/10.1093/acprof:oso/9780199595372.003.0013

Harmon L.J., Losos J.B., Jonathan Davies T., Gillespie R.G., Gittleman J.L., Bryan Jennings W., Kozak K.H., McPeek M.A., Moreno‐Roark F., Near T.J., 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution: International Journal of Organic Evolution 64, 2385–2396. https://doi.org/10.1111/j.1558-5646.2010.01025.x

Harmon L.J., Schulte J.A., Larson A., Losos J.B., 2003. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301, 961–964. https://doi.org/10.1126/science.1084786

Hautmann M., 2020. What is macroevolution? Palaeontology 63, 1–11. https://doi.org/10.1111/pala.12465

Heers A.M., Dial K.P., 2015. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies. Evolution 69, 305–320. https://doi.org/10.1111/evo.12576

Jablonski D., 2005. Mass extinctions and macroevolution. Paleobiology 31, 192–210. https://doi.org/10.1666/0094-8373(2005)031[0192:MEAM]2.0.CO;2

Jablonski D., 2008. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution: International Journal of Organic Evolution 62, 715–739. https://doi.org/10.1111/j.1558-5646.2008.00317.x

Jarvis E.D., Mirarab S., Aberer A.J., Li B., Houde P., Li C., Ho S.Y.W., Faircloth B.C., Nabholz B., J.T. Howard., 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331. https://doi.org/10.1126/science.1253451

Jetz W., Thomas G.H., Joy J.B., Hartmann K., Mooers A.O., 2012. The global diversity of birds in space and time. Nature 491, 444–448. https://doi.org/10.1038/nature11631

Klingenberg C.P., 2010. Evolution and development of shape: integrating quantitative approaches. Nature Reviews Genetics 11, 623–635. https://doi.org/10.1038/nrg2829

Klingenberg C.P., J. Marugán-Lobón., 2013. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Systematic Biology 62, 591–610. https://doi.org/10.1038/nrg2829

Kulemeyer C., Asbahr K., Gunz P., Frahnert S., Bairlein F., 2009. Functional morphology and integration of corvid skulls – a 3D geometric morphometric approach. Frontiers in Zoology 6, 2. https://doi.org/10.1186/1742-9994-6-2

Livezey B.C., Zusi R.L., 2006. Higher-Order Phylogeny of Modern Birds (Theropoda, Aves: Neornithes) Based on Comparative Anatomy. 1, Methods and Characters. Carnegie Museum of Natural History 37, 1-556. https://doi.org/10.2992/0145-9058(2006)37[1:PON]2.0.CO;2

Livezey B.C., Zusi R.L., 2007. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zoological Journal of the Linnean Society 149, 1–95. https://doi.org/10.1111/j.1096-3642.2006.00293.x

Losos J.B., Mahler D.L., 2010. Adaptive radiation: the interaction of ecological opportunity, adaptation, and speciation. In Bell MA., Futuyma D.J., Eanes W.F., Levinton J.S. (Eds.), Evolution after Darwin: the first 150 years. Sinauer, Sunderland, MA, pp. 381-420.

Michaud M., Veron G., Fabre A., 2020. Phenotypic integration in feliform carnivores: covariation patterns and disparity in hypercarnivores versus generalists. Evolution, In Press. https://doi.org/10.1111/evo.14112

Navalón G., Marugán-Lobón J., Bright J. A., Cooney C. R., Rayfield E.J., 2020. The consequences of craniofacial integration for the adaptive radiations of Darwin’s finches and Hawaiian honeycreepers. Nature Ecology & Evolution 4, 270–278. https://doi.org/10.1038/s41559-019-1092-y

Nudds R.L., Dyke G.J., Rayner J.M.V., 2007. Avian brachial index and wing kinematics: putting movement back into bones. Journal of Zoology, 272, 218–226. https://doi.org/10.1111/j.1469-7998.2006.00261.x

Oliveros C.H., Field D.J., Ksepka D.T., Barker F.K., Aleixo A., Andersen M.J., Alström P., Benz B.W., Braun E.L., Braun M.J., 2019. Earth history and the passerine superradiation. Proceedings of the National Academy of Sciences 116, 7916–7925. https://doi.org/10.1073/pnas.1813206116

Olson E.C., Miller R.L. 1952. Morphological Integration. University of Chicago Press, Chicago.

Paluh D.J., Stanley E.L., Blackburn D.C., 2020. Evolution of hyperossification expands skull diversity in frogs. Proceedings of the National Academy of Sciences 117, 8554–8562. https://doi.org/10.1073/pnas.2000872117

Pennell M.W., Harmon L.J., 2013. An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Annals of the New York Academy of Sciences, 1289, 90–105. https://doi.org/10.1111/nyas.12157

Pigot A.L., Sheard C.,. Miller E.T, Bregman T.P., Freeman B.G., Roll U., Seddon N., Trisos C.H., Weeks B.C., Tobias J.A., 2020. Macroevolutionary convergence connects morphological form to ecological function in birds. Nature Ecology & Evolution 4, 1–10. https://doi.org/10.1038/s41559-019-1070-4

Proctor N., Lynch P., 1993. Manual of Ornithology : Avian Structure and Function. Yale University Press, New Haven.

Prum R.O., Berv J.S., Dornburg A., Field D.J., Townsend J.P., Lemmon E.M., Lemmon A.R., 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573. https://doi.org/10.1038/nature15697

Randau M., Goswami A., 2018. Shape covariation (or the lack thereof) between vertebrae and other skeletal traits in felids: the whole is not always greater than the sum of parts. Evolutionary Biology 45, 196–210. https://doi.org/10.1007/s11692-017-9443-6

Rohlf F.J., Slice D., 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology 39, 40–59. https://doi.org/10.2307/2992207

Rohlf F. J., Marcus L.F., 1993. A revolution morphometrics. Trends in Ecology & Evolution 8, 129–132. https://doi.org/10.1016/0169-5347(93)90024-J

Schluter D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford. https://doi.org/10.1093/oso/9780198505235.001.0001

Schneider C.A., Rasband W.S., Eliceiri K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089

Segall M., Herrel A., Godoy-Diana R.., 2019. Hydrodynamics of frontal striking in aquatic snakes: drag, added mass, and the possible consequences for prey capture success. Bioinspiration & Biomimetics 14, 36005. https://doi.org/10.1088/1748-3190/ab0316

Segall M., Cornette R., Fabre A.-C., Godoy-Diana R., Herrel A., 2016. Does aquatic foraging impact head shape evolution in snakes? Proceedings of the Royal Society B: Biological Sciences 283, 20161645. https://doi.org/10.1098/rspb.2016.1645

Serrano F.J., Costa-Pérez M., Navalón G., Martín-Serra A., 2020. Morphological Disparity of the Humerus in Modern Birds. Diversity 12, 173. https://doi.org/10.3390/d12050173

Shatkovska O.V, Ghazali M., Mytiai I.S., Druz N., 2018. Size and shape correlation of birds’ pelvis and egg: Impact of developmental mode, habitat, and phylogeny. Journal of Morphology 279, 1590–1602. https://doi.org/10.1002/jmor.20888

Silvestro D., Antonelli A., Salamin N., Quental T.B., 2015. The role of clade competition in the diversification of North American canids. Proceedings of the National Academy of Sciences 112, 8684–8689. https://doi.org/10.1073/pnas.1502803112

Simpson G.G. 1944. Tempo and Mode in Evolution. Columbia University Press, New York.

Simpson G.G. 1953. The Major Features of Evolution. Columbia University Press, New York. https://doi.org/10.7312/simp93764

Tokita M., Yano W., James H.F., Abzhanov A., 2017. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin’s finches and Hawaiian honeycreepers. Philosophical Transactions of the Royal Society B: Biological Sciences 372, 20150481. https://doi.org/10.1098/rstb.2015.0481

Venditti C., Meade A., Pagel M., 2011. Multiple routes to mammalian diversity. Nature 479, 393–396. doi: 10.1038/nature10516. https://doi.org/10.1038/nature10516

Vermeij G.J., 1973. Biological versatility and earth history. Proceedings of the National Academy of Sciences 70, 1936–1938. https://doi.org/10.1073/pnas.70.7.1936

Vrba E.S., 1983. Macroevolutionary trends: new perspectives on the roles of adaptation and incidental effect. Science 221, 387–389. https://doi.org/10.1126/science.221.4608.387

Watanabe A., Fabre A.C., Felice R.N., Maisano J.A., Müller J., Herrel A., Goswami A., 2019. Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proceedings of the National Academy of Sciences 116, 14688–14697. https://doi.org/10.1073/pnas.1820967116

Wilman H., Belmaker J., Simpson J., De La Rosa C., Rivadeneira M.M., Jetz W., 2014. EltonTraits 1.0: Species‐level foraging attributes of the world’s birds and mammals. Ecology 95, 2027. https://doi.org/10.1890/13-1917.1

Wright N.A., Steadman D.W., Witt C.C., 2016. Predictable evolution toward flightlessness in volant island birds. Proceedings of the National Academy of Sciences 113, 4765–4770. https://doi.org/10.1073/pnas.1522931113

Yoder J.B., Clancey E., Des Roches S., Eastman J.M., Gentry L., Godsoe W., Hagey T.J., Jochimsen D., Oswald B.P., Robertson J., 2010. Ecological opportunity and the origin of adaptive radiations. Journal of Evolutionary Biology 23, 1581–1596. https://doi.org/10.1111/j.1420-9101.2010.02029.x

Zusi R.L., 1993. Patterns of Diversity in the Avian Skull. In: Hanken J., Hall B.K. (Eds.), The skull. Vol.  2. The University of Chicago Press, Chicago, pp. 391–437.
  

Cited by:

Andrew Orkney, Alex Bjarnason, Brigit C. Tronrud and Roger B. J. Benson (2021). Patterns of skeletal integration in birds reveal that adaptation of element shapes enables coordinated evolution between anatomical modules. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-021-01509-w

Daniel Rhoda, Marion Segall, Olivier Larouche, Kory Evans and Kenneth D Angielczyk (2021). Local Superimpositions Facilitate Morphometric Analysis of Complex Articulating Structures. Integrative and Comparative Biology. https://doi.org/10.1093/icb/icab031

Han Hu, Yan Wang, Paul G McDonald, Stephen Wroe, Jingmai K O'Connor, Alexander Bjarnason, Joseph J Bevitt, Xuwei Yin, Xiaoting Zheng, Zhonghe Zhou and Roger BJ Benson (2022). Earliest evidence for fruit consumption and potential seed dispersal by birds. eLife. https://doi.org/10.7554/eLife.74751

Aubrey Keirnan, Trevor H. Worthy, Jeroen B. Smaers, Karine Mardon, Andrew N. Iwaniuk and Vera Weisbecker (2022). Not like night and day: the nocturnal letter-winged kite does not differ from diurnal congeners in orbit or endocast morphology. Royal Society Open Science. https://doi.org/10.1098/rsos.220135

Jesús Marugán‐Lobón, Sergio M. Nebreda, Guillermo Navalón and Roger B. J. Benson (2022). Beyond the beak: Brain size and allometry in avian craniofacial evolution. Journal of Anatomy. https://doi.org/10.1111/joa.13555

Case Vincent Miller, Michael Pittman, Xiaoli Wang, Xiaoting Zheng and Jen A. Bright (2022). Diet of Mesozoic toothed birds (Longipterygidae) inferred from quantitative analysis of extant avian diet proxies. BMC Biology. https://doi.org/10.1186/s12915-022-01294-3

Guillermo Navalón, Alexander Bjarnason, Elizabeth Griffiths and Roger B. J. Benson (2022). Environmental signal in the evolutionary diversification of bird skeletons. Nature. https://doi.org/10.1038/s41586-022-05372-y

Juan Benito, Pei-Chen Kuo, Klara E. Widrig, John W. M. Jagt and Daniel J. Field (2022). Cretaceous ornithurine supports a neognathous crown bird ancestor. Nature. https://doi.org/10.1038/s41586-022-05445-y

Emma J. Holvast and Daniel B. Thomas (2022). Taxonomic classification of seabird long bones using 3D shape: A method with wider potential in zooarchaeology. Journal of Archaeological Science: Reports. https://doi.org/10.1016/j.jasrep.2022.103641

Christopher T. Griffin, João F. Botelho, Michael Hanson, Matteo Fabbri, Daniel Smith-Paredes, Ryan M. Carney, Mark A. Norell, Shiro Egawa, Stephen M. Gatesy, Timothy B. Rowe, Ruth M. Elsey, Sterling J. Nesbitt and Bhart-Anjan S. Bhullar (2022). The developing bird pelvis passes through ancestral dinosaurian conditions. Nature. https://doi.org/10.1038/s41586-022-04982-w

Alexander D. Clark, Han Hu, Roger BJ Benson and Jingmai K. O’Connor (2023). Reconstructing the dietary habits and trophic positions of the Longipterygidae (Aves: Enantiornithes) using neontological and comparative morphological methods. PeerJ. https://doi.org/10.7717/peerj.15139

Talia M. Lowi-Merri, Oliver E. Demuth, Juan Benito, Daniel J. Field, Roger B. J. Benson, Santiago Claramunt and David C. Evans (2023). Reconstructing locomotor ecology of extinct avialans: a case study of Ichthyornis comparing sternum morphology and skeletal proportions . Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2022.2020

Pei‐Chen Kuo, Roger B. J. Benson and Daniel J. Field (2023). The influence of fossils in macroevolutionary analyses of 3D geometric morphometric data: A case study of galloanseran quadrates. Journal of Morphology. https://doi.org/10.1002/jmor.21594

Pei-Chen Kuo, Guillermo Navalón, Roger B. J. Benson and Daniel J. Field (2024). Macroevolutionary drivers of morphological disparity in the avian quadrate. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2023.2250

Nicoleta Manuta, Buket Çakar, Ozan Gündemir and Mihaela-Claudia Spataru (2024). Shape and Size Variations of Distal Phalanges in Cattle. Animals. https://doi.org/10.3390/ani14020194

 


PDF
S.I. Data