|   | Original article : anatomy atlas3D atlas and comparative osteology of the middle ear ossicles among Eulipotyphla (Mammalia, Placentalia).Published online: 03/05/2017
 Keywords:
			aquatic adaptation; convergence; Eulipotyphla; fossorial adaptation; hearing
 
 https://doi.org/10.18563/m3.3.2.e3
 
 References: 56
 Cited by: 2
 
 
 Cite this article:  
					Daisuke Koyabu, 2017. 3D atlas and comparative osteology of the middle ear ossicles among Eulipotyphla (Mammalia, Placentalia). MorphoMuseuM 3 (2)-e3. doi: 10.18563/m3.3.2.e3					Export citation 
 
 AbstractConsiderable morphological variations are found in the middle ear among mammals. Here I present a three-dimensional atlas of the middle ear ossicles of eulipotyphlan mammals. This group has radiated into various environments as terrestrial, aquatic, and subterranean habitats independently in multiple lineages. Therefore, eulipotyphlans are an ideal group to explore the form-function relationship of the middle ear ossicles. This comparative atlas of hedgehogs, true shrews, water shrews, mole shrews, true moles, and shrew moles encourages future studies of the middle ear morphology of this diverse group.
 Specimens and 3D Data
   
		Erinaceus europaeus DK2331	
		
	
	View specimen	 
    
   
		Anourosorex yamashinai SIK_yamashinai	
		
	
	View specimen	 
    
   
		Blarina brevicauda M8003	
		
	
	View specimen	 
    
   
		Chimarrogale platycephala DK5481	
		
	
	View specimen	 
    
   
		Suncus murinus DK1227	
		
	
	View specimen	 
    
   
		Condylura cristata  SIK0050	
		
	
	View specimen	 
    
   
		Euroscaptor klossi SIK0673	
		
	
	View specimen	 
    
   
		Euroscaptor malayana SIK_malayana	
		
	
	View specimen	 
    
   
		Mogera wogura DK2551	
		
	
	View specimen	 
    
   
		Talpa altaica SIK_altaica	
		
	
	View specimen	 
    
   
		Urotrichus talpoides DK0887	
		
	
	View specimen	 
    
   
		Oreoscaptor mizura DK6545	
		
	
	View specimen	 
    
   
		Scalopus aquaticus SIK_aquaticus	
		
	
	View specimen	 
    
   
		Scapanus orarius SIK_orarius	
		
	
	View specimen	 
    
   
		Neurotrichus gibbsii SIK_gibbsii	
		
	
	View specimen	 
    
 
 Published in Volume 03, Issue 02 (2017)
 
 
 
						ReferencesAbe, H., 2003. Trapping, habitat, and activity of the Japanese water shrew, Chimarrogale platycephala (in Japanese). Honyurui Kagaku 43, 51-65.
 Aitkin, L. M., Horseman, B. G., Bush, B. M. H., 1982. Some aspects of the auditory pathway and audition in the European mole, Talpa europaea. Brain, Behavior and Evolution 21(2-3), 49-59. https://doi.org/10.1159/000121616
 
 Asher, R. J., Geisler, J. H., Sánchez-Villagra, M. R., 2008. Morphology, paleontology, and placental mammal phylogeny. Systematic Biology 57(2), 311-317. https://doi.org/10.1080/10635150802033022
 
 Burda, H., 1979. Morphology of the middle and inner ear in some species of shrews (Insectivora, Soricidae). Přírodovědné práce Ústav°u Československé akademie věd v Brně 13(4), 1-56.
 
 Burda, H., 2006. Ear and eye in subterranean mole-rats, Fukomys anselli (Bathyergidae) and Spalax ehrenbergi (Spalacidae): progressive specialisation or regressive degeneration? Animal Biology 56(4), 475-486. https://doi.org/10.1163/157075606778967847
 
 Burda, H., Bruns, V., Hickman, G. C., 1992. The ear in subterranean insectivora and rodentia in comparison with ground-dwelling representatives. I. sound conducting system of the middle ear. Journal of Morphology 214(1), 49-61. https://doi.org/10.1002/jmor.1052140104
 
 Burda, H., Bruns, V., Müller, M., 1990. Sensory adaptations in subterranean mammals. In: Nevo, E., Reig, O. (Eds.), Evolution of Subterranean Mammals at the Organismal and Molecular Levels. Wiley-Liss, New York, pp. 269-293.
 
 Cassola, F., 2016. Euroscaptor klossi. The IUCN red list of threatened species, e.T41460A22320395. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T41460A22320395.en
 
 Dalquest, W. W., Orcutt, D. R., 1942. The biology of the least shrew-mole, Neurotrichus gibbsii minor. The American Midland Naturalist Journal 27(2), 387-401. https://doi.org/10.2307/2421007
 
 Doran, A. H., 1879. Morphology of the mammalian ossicula auditus. Transactions of the Linnean Society of London 1(7), 371-497. https://doi.org/10.1111/j.1096-3642.1878.tb00663.x
 
 Dubey, S., Salamin, N., Ohdachi, S. D., Barrière, P., Vogel, P., 2007. Molecular phylogenetics of shrews (Mammalia: Soricidae) reveal timing of transcontinental colonizations. Molecular Phylogenetics and Evolution 44(1), 126-137. 10.1016/j.ympev.2006.12.002. https://doi.org/10.1016/j.ympev.2006.12.002
 
 Fleischer, G., 1978. Evolutionary principles of the mammalian middle ear. Advances in Anatomy, Embryology and Cell Biology 55, 1-70. https://doi.org/10.1007/978-3-642-67143-2
 
 Gatesy, J., Meredith, R. W., Janecka, J. E., Simmons, M. P., Murphy, W. J., Springer, M. S., 2016. Resolution of a concatenation/coalescence kerfuffle: partitioned coalescence support and a robust family‐level tree for Mammalia. Cladistics, in press. https://doi.org/10.1111/cla.12170
 
 George, S. B., Choate, J. R., Genoways, H. H., 1986. Blarina brevicauda. Mammalian Species 261, 1-9.
 
 Godfrey, G. K., 1955. A field study of the activity of the mole (Talpa europaea). Ecology 36(4), 678-685. https://doi.org/10.2307/1931306
 
 Hamilton, W. J., 1931. Habits of the star-nosed mole, Condylura cristata. Journal of Mammalogy 12(4), 345-355. https://doi.org/10.2307/1373758
 
 He, K., Li, Y. J., Brandley, M. C., Lin, L. K., Wang, Y. X., Zhang, Y. P., Jiang, X. L., 2010. A multi-locus phylogeny of Nectogalini shrews and influences of the paleoclimate on speciation and evolution. Molecular Phylogenetics and Evolution 56(2), 734-746. https://doi.org/10.1016/j.ympev.2010.03.039
 
 He, K., Shinohara, A., Jiang, X.-L., Campbell, K. L., 2014. Multilocus phylogeny of talpine moles (Talpini, Talpidae, Eulipotyphla) and its implications for systematics. Molecular Phylogenetics and Evolution 70, 513-521. https://doi.org/10.1016/j.ympev.2013.10.002
 
 Henson Jr, O. W., 1961. Some morphological and functional aspects of certain structures of the middle ear in bats and insectivores. University of Kansas Science Bulletin 42(3), 151-255.
 
 Heth, G., Frankenberg, E., Nevo, E., 1986. Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi). Experientia 42(11), 1287-1289. https://doi.org/10.1007/BF01946426
 
 Kawada, S., 2016. Morphological review of the Japanese mountain mole (Eulipotyphla, Talpidae) with the proposal of a new genus. Mammal Study 41(4), 191-205. https://doi.org/10.3106/041.041.0404
 
 Kawada, S., Shinohara, A., Yasuda, M., Oda, S., Lim, B. L., 2003. The mole of Peninsular Malaysia: notes on its identification and ecology. Mammal Study 28(1), 73-77. https://doi.org/10.3106/mammalstudy.28.73
 
 Kawada, S., Yasuda, M., Shinohara, A., Lim, B. L., 2008. Redescription of the Malaysian mole as to be a true species, Euroscaptor malayana (Insectivora, Talpidae). Memoirs of the National Science Museum, Tokyo 45, 65-74.
 
 Ketten, D. R., 1992. The marine mammal ear: specializations for aquatic audition and echolocation. In: Webster, D.B., Popper, A.N., Fay, R.R. (Eds.), The Evolutionary Biology of Hearing. Springer, New York, pp. 717-750. https://doi.org/10.1007/978-1-4612-2784-7_44
 
 Krettek, A., Gullberg, A., Arnason, U., 1995. Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog, Erinaceus europaeus, and the phylogenetic position of the Lipotyphla. Journal of Molecular Evolution 41(6), 952-957. https://doi.org/10.1007/BF00173175
 
 Lavender, D., Taraskin, S. N., Mason, M. J., 2011. Mass distribution and rotational inertia of “microtype” and “freely mobile” middle ear ossicles in rodents. Hearing Research 282, 97-107. https://doi.org/10.1016/j.heares.2011.09.003
 
 Lin, L.-K., Motokawa, M., 2014. Mammals of Taiwan: volume 1. Soricomorpha. Tunghai University Press, Taichung.
 
 Mason, M. J., 2001. Middle ear structures in fossorial mammals: a comparison with non-fossorial species. Journal of Zoology 255(4), 467-486. https://doi.org/10.1017/S0952836901001558
 
 Mason, M. J., 2003. Morphology of the middle ear of golden moles (Chrysochloridae). Journal of Zoology 260(4), 391-403. https://doi.org/10.1017/S095283690300387X
 
 Mason, M. J., 2006. Evolution of the middle ear apparatus in talpid moles. Journal of Morphology 267(6), 678-695. https://doi.org/10.1002/jmor.10430
 
 Mason, M. J., 2016. Structure and function of the mammalian middle ear. II: Inferring function from structure. Journal of Anatomy 228(2), 300-312. https://doi.org/10.1111/joa.12316
 
 Miller, G. S. 1940. Notes on some moles from southeastern Asia. Journal of Mammalogy 21(4), 442-444. https://doi.org/10.2307/1374883
 
 Motokawa, M., 2004. Phylogenetic relationships within the family Talpidae (Mammalia: Insectivora). Journal of Zoology 263(2), 147-157. https://doi.org/10.1017/S0952836904004972
 
 Nishihara, H., Maruyama, S., Okada, N., 2009. Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. Proceedings of the National Academy of Sciences of the United States of America 106(13), 5235-5240. https://doi.org/10.1073/pnas.0809297106
 
 Nummela, S., 1995. Scaling of the mammalian middle ear. Hear Res 85(1), 18-30. https://doi.org/10.1016/S0378-5955(99)00054-4https://doi.org/10.1016/0378-5955(95)00030-8
 
 Nummela, S., Wägar, T., Hemilä, S., Reuter, T., 1999. Scaling of the cetacean middle ear. Hearing Research 133(1), 71-81. https://doi.org/10.1016/S0378-5955(99)00054-4
 
 Ohdachi, S., Dokuchaev, N. E., Hasegawa, M., Masuda, R., 2001. Intraspecific phylogeny and geographical variation of six species of northeastern Asiatic Sorex shrews based on the mitochondrial cytochrome b sequences. Molecular Ecology 10(9), 2199-2213. https://doi.org/10.1046/j.1365-294X.2001.01359.x
 
 Ohdachi, S. D., Hasegawa, M., Iwasa, M. A., Vogel, P., Oshida, T., Lin, L. K., Abe, H., 2006. Molecular phylogenetics of soricid shrews (Mammalia) based on mitochondrial cytochrome b gene sequences: with special reference to the Soricinae. Journal of Zoology 270(1), 199-200. https://doi.org/10.1111/j.1469-7998.2006.00125.x
 
 Ohdachi, S. D., Ishibashi, Y., Iwasa, M. A., Saitoh, T., 2009. The Wild Mammals of Japan. Shoukadoh, Kyoto.
 
 Ohdachi, S. D., Iwasa, M. A., Nesterenko, V. A., Abe, H., Masuda, R., Haberl, W., 2004. Molecular phylogenetics of Crocidura shrews (Insectivora) in east and central Asia. Journal of Mammalogy 85(3), 396-403. https://doi.org/10.1644/1545-1542(2004)085<0396:MPOCSI>2.0.CO;2
 
 Petersen, K. E., Yates, T. L., 1980. Condylura cristata. Mammalian Species (129), 1-4. https://doi.org/10.2307/3503812
 
 Pleštilová, L., Hrouzková, E., Burda, H., Šumbera, R., 2016. Does the morphology of the ear of the Chinese bamboo rat (Rhizomys sinensis) show “subterranean” characteristics? Journal of Morphology 277(5), 575-584. https://doi.org/10.1002/jmor.20519
 
 Sánchez-Villagra, M. R., Horovitz, I., Motokawa, M., 2006. A comprehensive morphological analysis of talpid moles (Mammalia) phylogenetic relationships. Cladistics 22(1), 59-88. https://doi.org/10.1111/j.1096-0031.2006.00087.x
 
 Segall, W., 1970. Morphological parallelisms of the bulla and auditory ossicles in some insectivores and marsupials. Fieldiana Zoology 51, 169-205. https://doi.org/10.5962/bhl.title.2899
 
 Shinohara, A., Campbell, K. L., Suzuki, H., 2003. Molecular phylogenetic relationships of moles, shrew moles, and desmans from the new and old worlds. Molecular Phylogenetics and Evolution 27(2), 247-258. https://doi.org/10.1016/S1055-7903(02)00416-5
 
 Shinohara, A., Campbell, K. L., Suzuki, H., 2005. An evolutionary view on the Japanese talpids based on nucleotide sequences. Mammal Study 30(1), 19-24. https://doi.org/10.3106/1348-6160(2005)30[S19:AEVOTJ]2.0.CO;2
 
 Shinohara, A., Kawada, S.-i., Son, N. T., Koshimoto, C., Endo, H., Can, D. N., Suzuki, H., 2014. Molecular phylogeny of east and southeast Asian fossorial moles (Lipotyphla, Talpidae). Journal of Mammalogy 95(3), 455-466. https://doi.org/10.1644/13-MAMM-A-135
 
 Shinohara, A., Suzuki, H., Tsuchiya, K., Zhang, Y. P., Luo, J., Jiang, X. L., Wang, Y. X., Campbell, K. L., 2004. Evolution and biogeography of talpid moles from continental East Asia and the Japanese Islands inferred from mitochondrial and nuclear gene sequences. Zoological Science 21(12), 1177-1185.
 https://doi.org/10.2108/zsj.21.1177
 
 Solntseva, G., 2011. The middle ear in the ontogenesis of mammals. Russian Journal of Developmental Biology 42(6), 412-425. https://doi.org/10.1134/S1062360411060051
 
 Spoor, C. F., Zonneveld, F. W., Macho, G. A., 1993. Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. American Journal of Physical Anthropology 91(4), 469-484. https://doi.org/10.1002/ajpa.1330910405
 
 Stroganov, S. U., 1945. Morphological characters of the auditory ossicles of recent Talpidae. Journal of Mammalogy 26(4), 412-420. https://doi.org/10.2307/1375161
 
 Wannaprasert, T., 2016. Functional morphology of the ear of the lesser bamboo rat (Cannomys badius). Mammal Study 41(3), 107-117. https://doi.org/10.3106/041.041.0301
 
 Whidden, H. P., 2000. Comparative myology of moles and the phylogeny of the Talpidae (Mammalia, Lipotyphla). American Museum Novitates 3294, 1-53. https://doi.org/10.1206/0003-0082(2000)3294<0001:CMOMAT>2.0.CO;2
 
 Yates, T. L., Moore, D. W., 1990. Speciation and evolution in the family Talpidae (Mammalia: Insectivora). In: Nevo, E., Reig, O. (Eds.), Evolution of Subterranean Mammals at the Organismal and Molecular Levels. Wiley-Liss, New York, p. 269.
 
 Yokohata, Y., 2005. A brief review of the biology on moles in Japan. Mammal Study 30, S25-S30. https://doi.org/10.3106/1348-6160(2005)30[S25:ABROTB]2.0.CO;2
 
						Cited by:Daisuke Koyabu, Misato Hosojima and Hideki Endo (2017). Into the dark: patterns of middle ear adaptations in subterranean eulipotyphlan mammals. Royal Society Open Science. https://doi.org/10.1098/rsos.170608
 Yan Zhang, Hui Zhang, Li Zhuo, Xiaoguang Li, Zhiyong Zhao, Pengfei Zhao and Zhenchang Wang (2019). A 3D Normal Human Ear Atlas of Voxel-Based CT Images. Sensing and Imaging. https://doi.org/10.1007/s11220-019-0238-y
 
  
 | PDF
 |