Current issue


2025-09
Volume 11, issue 03
<< prev. next >>
ISSN: 2274-0422

Article Management

You must log in to submit or manage articles.

You do not have an account yet ? Sign up.

Most downloaded articles (last month)


Page 8 of 10, showing 20 record(s) out of 195 total

3D models related to the publication: A Dorcatherium (Mammalia, Ruminantia, middle Miocene) petrosal bone and the tragulid ear region.
Bastien Mennecart Logo and Loïc Costeur Logo
Published online: 01/10/2016

Keywords: inner ear; Miocene; phylogeny; ruminant

https://doi.org/10.18563/m3.2.1.e2

  Abstract

    The present 3D Dataset contains the 3D models analyzed in the article Mennecart, B., and L. Costeur. 2016. A Dorcatherium (Mammalia, Ruminantia, Middle Miocene) petrosal bone and the tragulid ear region. Journal of Vertebrate Paleontology 36(6), 1211665(1)-1211665(7). DOI: 10.1080/02724634.2016.1211665

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 02, Issue 01 (2016)

PDF
3D models related to the publication: Morphogenesis of the liver during the human embryonic period
Ayumi Hirose Logo, Takashi Nakashima, Naoto Shiraki, Shigehito Yamada Logo, Chigako Uwabe, Katsumi Kose Logo and Tetsuya Takakuwa Logo
Published online: 17/03/2016

Keywords: human embryo; human liver; magnetic resonance imaging; three-dimensional reconstruction

https://doi.org/10.18563/m3.1.4.e1

  Abstract

    The present 3D Dataset contains the 3D models analyzed in: Hirose, A., Nakashima, T., Yamada, S., Uwabe, C., Kose, K., Takakuwa, T. 2012. Embryonic liver morphology and morphometry by magnetic resonance microscopic imaging.  Anat Rec (Hoboken) 295, 51-59. doi: 10.1002/ar.21496 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 01, Issue 04 (2016)

PDF
3D models related to the publication: Morphogenesis of the stomach during the human embryonic period
Ami Nako, Norihito Kaigai, Naoto Shiraki, Shigehito Yamada Logo, Chigako Uwabe, Katsumi Kose Logo and Tetsuya Takakuwa Logo
Published online: 16/11/2015

Keywords: human embryo; human stomach; magnetic resonance imaging; three-dimensional reconstruction

https://doi.org/10.18563/m3.1.4.e3

  Abstract

    The present 3D Dataset contains the 3D models analyzed in: Kaigai N et al. Morphogenesis and three-dimensional movement of the stomach during the human embryonic period, Anat Rec (Hoboken). 2014 May;297(5):791-797. doi: 10.1002/ar.22833. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 01, Issue 04 (2016)

PDF
3D models related to the publication: Morphological and functional changes in the vertebral column with increasing aquatic adaptation in crocodylomorphs
Julia Molnar Logo, Stephanie E. Pierce Logo, Bhart-Anjan Bhullar Logo, Alan Turner Logo and John Hutchinson Logo
Published online: 06/11/2015

Keywords: archosaur; axial skeleton; Vertebrae

https://doi.org/10.18563/m3.1.3.e5

  Abstract

    This contribution contains the 3D models described and figured in the following publication: Molnar, JL, Pierce, SE, Bhullar, B-A, Turner, AH, Hutchinson, JR (accepted). Morphological and functional changes in the crocodylomorph vertebral column with increasing aquatic adaptation. Royal Society Open Science. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 01, Issue 03 (2015)

PDF
The endocranial cast of Microchoerus erinaceus (Euprimates, Tarsiiformes).
Maëva J. Orliac Logo
Published online: 24/09/2015

Keywords: endocast; Late Eocene; Omomyiformes; Primate

https://doi.org/10.18563/m3.1.3.e4

  Abstract

    This contribution contains the 3D model described and figured in the following publication: Ramdarshan A., Orliac M.J., 2015. Endocranial morphology of Microchoerus erinaceus (Euprimates, Tarsiiformes) and early evolution of the Euprimates brain. American Journal of Physical Anthropology. doi: 10.1002/ajpa.22868

      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 01, Issue 03 (2015)

PDF
3D models related to the publication: Ontogenetic variability of the intertympanic sinus distinguishes lineages within Crocodylia
Gwendal Perrichon Logo, Lionel Hautier Logo, Yohan Pochat-Cottilloux Logo, Irena Raselli Logo, Céline Salaviale, Benjamin Dailh, Nicolas Rinder, Vincent Fernandez Logo, Jérôme Adrien Logo, Joël Lachambre Logo and Jeremy E. Martin Logo
Published online: 30/01/2023

Keywords: Crocodylia; Ontogeny; sinus

https://doi.org/10.18563/journal.m3.173

  Abstract

    The present 3D Dataset contains the 3D models analyzed in: Perrichon et al. 2023. Ontogenetic variability of the intertympanic sinus distinguishes lineages within Crocodylia.
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 09, issue 01 (2023)

PDF
The endocranial cast of a 10 ka intentionally deformed human cranium from China
Yin Qiyu Logo, Li Qiang Logo, Ma Ming Logo, Zhang Wei Logo and Ni Xijun Logo
Published online: 27/07/2022

Keywords: endocranial cast; intentional cranial deformation; Northeast China

https://doi.org/10.18563/journal.m3.169

  Abstract

    This contribution contains the 3D model of an endocranial cast analyzed in “A 10 ka intentionally deformed human skull from Northeast Asia”. There are many studies on the morphological characteristics of intentional cranial deformation (ICD), but few related 3D models were published. Here, we present the surface model of an intentionally deformed 10 ka human cranium for further research on ICD practice. The 3D model of the endocranial cast of this ICD cranium was discovered near Harbin City, Province Heilongjiang, Northeast China. The fossil preserved only the frontal, parietal, and occipital bones. To complete the endocast model of the specimen, we printed a 3D model and used modeling clay to reconstruct the missing part based on the general form of the modern human endocast morphology.
      

  Specimens

    Homo sapiens IVPP-PA1616 View specimen

    M3#972

    The frontal region of the endocast is flattened, probably formed by the constant pressure on the frontal bone during growth. There is a well-developed frontal crest on the endocranial surface. The endocast widens posteriorly from the frontal lobe. The widest point of the endocast is at the lateral border of the parietal lobe. The lower parietal areas display a marked lateral expansion. The overall shape of the endocast is asymmetrical, with the left side of the parietal lobe being more laterally expanded than the right side. Like the frontal lobe, the occipital lobe is also anteroposteriorly flattened.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.972   state:published




    Download 3D surface file

    M3#976

    The original endocranial cast model (with texture) of IVPP-PA1616. It shows the original structures of the specimen, and was not altered in any way.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.976   state:published




    Download 3D surface file


 
  M3 article infos

Published in Volume 08, issue 03 (2022)

PDF
A surface scan of the "Tübingen Steinkern", Holotype of Proganochelys quenstedtii (Testudinata), with some historical remarks.
Ingmar Werneburg Logo, Christina Kyriakouli Logo and Tomasz Szczygielski Logo
Published online: 08/08/2022

Keywords: Friedrich August Quenstedt; history of science; Holotype; steinkern; surface scan

https://doi.org/10.18563/journal.m3.168

  Abstract

    Turtles are one of the most impressive vertebrates. Much of the body is either hidden in a shell or can be drawn into it. Turtles impress with their individual longevity and their often peaceful disposition. Also, with their resilience, they have survived all extinction events since their emergence in the Late Triassic. Today's diversity of shapes is impressive and ranges from the large and high domed Galapagos turtles to the hamster-sized flat pancake turtles. The holotype of one of the oldest fossil turtles, Proganochelys quenstedtii, is housed in the paleontological collection in Tübingen/Germany. Since its discovery some years before 1873, P. quenstedtii has represented the 'prototype' of the turtle and has had an eventful scientific history. It was found in Neuenhaus (Häfner-Neuhausen in Schönbuch forest), Baden-Württemberg, Germany, and stems from Löwenstein-Formation (Weißer Keupersandstein), Late Triassic. The current catalogue number is GPIT-PV-30000. The specimen is listed in the historical inventory “Tübinger Petrefaktenverzeichnis 1841 bis 1896, [folio 326v.]“, as “[catalogue number: PV]16549, Schildkröte Weiser Keupersandstein Hafnerhausen” [turtle from White Keuper Sandstone]. Another, more recent synonym is “GPIT/RE/9396”. The same specimen was presented as uncatalogued by Gaffney (1990). Here we provide a surface scan of the steinkern for easier access of this famous specimen to the scientific community.
      

  Specimens
 
  M3 article infos

Published in Volume 08, issue 03 (2022)

PDF
3D models related to the publication: Hide and seek shark teeth in Random Forests: Machine learning applied to Scyliorhinus canicula
Fidji Berio Logo, Yann Bayle Logo, Sylvie Agret, Daniel Baum Logo, Nicolas Goudemand Logo and Mélanie Debiais-Thibaud Logo
Published online: 24/05/2022

Keywords: geometric morphometrics; machine learning; Scyliorhinus canicula; sharks; tooth morphology

https://doi.org/10.18563/journal.m3.164

  Abstract

    The present dataset contains the 3D models analyzed in Berio, F., Bayle, Y., Baum, D., Goudemand, N., and Debiais-Thibaud, M. 2022. Hide and seek shark teeth in Random Forests: Machine learning applied to Scyliorhinus canicula. It contains the head surfaces of 56 North Atlantic and Mediterranean small-spotted catsharks Scyliorhinus canicula, from which tooth surfaces were further extracted to perform geometric morphometrics and machine learning. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 08, issue 02 (2022)

PDF
3D models related to the publication: The neuroanatomy of Zulmasuchus querejazus (Crocodylomorpha, Sebecidae) and its implications for the paleoecology of sebecosuchians
Yohan Pochat-Cottilloux Logo, Jeremy E. Martin Logo, Stéphane Jouve Logo, Gwendal Perrichon Logo, Jérôme Adrien Logo, Céline Salaviale, Christian de Muizon Logo, Ricardo Cespedes and Romain Amiot Logo
Published online: 26/11/2021

Keywords: Bolivia; Crocodylomorpha; paleoneuroanatomy; Sebecidae; Zulmasuchus

https://doi.org/10.18563/journal.m3.148

  Abstract

    The present 3D Dataset contains the 3D models analyzed in Pochat-Cottilloux Y., Martin J.E., Jouve S., Perrichon G., Adrien J., Salaviale C., de Muizon C., Cespedes R. & Amiot R. (2021). The neuroanatomy of Zulmasuchus querejazus (Crocodylomorpha, Sebecidae) and its implications for the paleoecology of sebecosuchians. The Anatomical Record, https://doi.org/10.1002/ar.24826 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 07, issue 04 (2021)

PDF

3D models related to the publication: The morphology and evolution of chondrichthyan cranial muscles: a digital dissection of the elephantfish Callorhinchus milii and the catshark Scyliorhinus canicula
Richard Dearden Logo, Rohan Mansuit Logo, Anthony Herrel Logo, Antoine Cuckovic Logo, Dominique Didier, Paul Tafforeau Logo and Alan Pradel Logo
Published online: 11/01/2021

Keywords: chondrichthyan; cranial muscles; digital dissection; elasmobranch; holocephalan

https://doi.org/10.18563/journal.m3.133

  Abstract

    This contribution contains 3D models of the cranial skeleton and muscles in an elephantfish (Callorhinchus milii) and a catshark (Scyliorhinus canicula), based on synchrotron tomographic scans. These datasets were analyzed and described in Dearden et al. (2021) “The morphology and evolution of chondrichthyan cranial muscles: a digital dissection of the elephantfish Callorhinchus milii and the catshark Scyliorhinus canicula.” Journal of Anatomy. 

  Specimens
 
  M3 article infos

Published in Volume 07, issue 01 (2021)

PDF
3D models related to the publication: Endocranium and ecology of Eurotherium theriodis, a European hyaenodont mammal from the Lutetian
Morgane Dubied Logo, Floréal Solé Logo and Bastien Mennecart Logo
Published online: 09/09/2021

Keywords: brain; ecology; Eocene; Hyaenodonta; phylogeny

https://doi.org/10.18563/journal.m3.84

  Abstract

    The present 3D Dataset contains the 3D model analyzed in the article : Dubied et al. (2021), Endocranium and ecology of Eurotherium theriodis, a European hyaenodont mammal from the Lutetian. Acta Palaeontologica Polonica 2021, https://doi.org/10.4202/app.00771.2020 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 07, issue 03 (2021)

PDF
3D model related to the publication: New data on the Miocene dormouse Simplomys García-Paredes, 2009 from the peri-alpin basins of Switzerland and Germany: palaeodiversity of a rare genus in Central Europe
Xiaoyu Lu Logo, Olivier Maridet Logo and Jérôme Priéto Logo
Published online: 13/05/2019

Keywords: Early Miocene; Gliridae; Maxilla; Simplomys; Switzerland

https://doi.org/10.18563/journal.m3.83

  Abstract

    This contribution contains the 3D model of the holotype of Simplomys hugi, the new dormouse species from the locality of Glovelier described and figured in the following publication: New data on the Miocene dormouse Simplomys García-Paredes, 2009 from the peri-alpin basins of Switzerland and Germany: palaeodiversity of a rare genus in Central Europe. https://doi.org/10.1007/s12549-018-0339-y 

  Specimens
 
  M3 article infos

Published in Volume 05, issue 02 (2019)

PDF
3D models related to the publication: Wild versus lab house mice: Effects of age, diet, and genetics on molar geometry and topography.
Sabrina Renaud Logo, Caroline Romestaing Logo and Yoland Savriama Logo
Published online: 06/08/2021

Keywords: dental functional morphology; geometric morphometrics; hybridization; mastication; occlusal relief

https://doi.org/10.18563/journal.m3.141

  Abstract

    This contribution contains 3D models of upper molar rows of house mice (Mus musculus domesticus). The erupted part of the right row is presented for specimens belonging to four groups: wild-trapped mice, wild-derived lab offspring, a typical laboratory strain (Swiss) and hybrids between wild-derived and Swiss mice. These models are analyzed in the following publication: Savriama et al 2021: Wild versus lab house mice: Effects of age, diet, and genetics on molar geometry and topography. https://doi.org/10.1111/joa.13529 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 07, issue 03 (2021)

PDF
3D model related to the publication: The endocranial anatomy of the stem turtle Naomichelys speciosa from the Early Cretaceous of North America
Ariana Paulina-Carabajal Logo, Juliana Sterli Logo and Ingmar Werneburg Logo
Published online: 10/09/2019

Keywords: brain endocast; inner ear; micro computed tomography; Morphology; Testudinata

https://doi.org/10.18563/journal.m3.99

  Abstract

    The present 3D Dataset contains the 3D model analyzed in the following publication: Paulina-Carabajal, A., Sterli, J., Werneburg, I., 2019. The endocranial anatomy of the stem turtle Naomichelys speciosa from the Early Cretaceous of North America. Acta Palaeontologica Polonica, https://doi.org/10.4202/app.00606.2019 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 05, issue 04 (2019)

PDF
3D model related to the publication: An enigmatic aquatic snake from the Cenomanian of northern South America
Adriana Albino Logo, Jorge D. Carrillo-Briceño Logo and James, M. Neenan Logo
Published online: 24/05/2016

Keywords: aquatic; Cretaceous; Snake; South America; Vertebrae

https://doi.org/10.18563/m3.2.2.e2

  Abstract

    This contribution contains the 3D model described and figured in the following publication: Albino, A., Carrillo-Briceño, J. D. & Neenan, J. M. 2016. An enigmatic aquatic snake from the Cenomanian of northern South America. PeerJ 4:e2027 http://dx.doi.org/10.7717/peerj.2027 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 02, Issue 02 (2017)

PDF
3D models related to the publication: Postcranial morphology of the extinct rodent Neoepiblema (Rodentia: Chinchilloidea): insights into the paleobiology of neoepiblemids
Leonardo Kerber Logo, Adriana M. Candela Logo, José D. Ferreira Logo, Flávio A. Pretto Logo, Jamile Bubadué Logo and Francisco R. Negri Logo
Published online: 20/10/2021

Keywords: Chinchilloidea; functional morphology; Giant rodents; Neogene; Solimões Formation.

https://doi.org/10.18563/journal.m3.140

  Abstract

    This contribution contains the 3D models of postcranial bones (humerus, ulna, innominate, femur, tibia, astragalus, navicular, and metatarsal III) described and figured in the following publication: “Postcranial morphology of the extinct rodent Neoepiblema (Rodentia: Chinchilloidea): insights into the paleobiology of neoepiblemids”. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 07, issue 04 (2021)

PDF
3D models related to the publication: Re-description of the braincase of the rebbachisaurid sauropod Limaysaurus tessonei and novel endocranial information based on CT scans
 
Ariana Paulina-Carabajal Logo and Jorge Calvo
Published online: 03/02/2021

Keywords: Cranial endocast; Dinosauria; inner ear; Paleoneurology

https://doi.org/10.18563/journal.m3.130

  Abstract

    This contribution contains the 3D models described and figured in the following publication: Paulina-Carabajal A and Calvo JO 2021. Re-description of the braincase of the rebbachisaurid sauropod Limaysaurus tessonei and novel endocranial information based on CT scans. Anais da Academia Brasileira de Ciências 93(Suppl. 2): e20200762 https://doi.org/10.1590/0001-3765202120200762 

  Specimens
 
  M3 article infos

Published in Volume 07, issue 01 (2021)

PDF
3D models related to the publication: Brief comment on the brain and inner ear of Giganotosaurus carolinii (Dinosauria: Theropoda) based on CT scans.
Mauro N. Nieto Logo and Ariana Paulina-Carabajal Logo
Published online: 01/04/2020

Keywords: Carcharodontosauridae; Cranial endocast; CT scans; Endosseous Labyrinth; Paleoneurology

https://doi.org/10.18563/journal.m3.108

  Abstract

    This contribution contains the 3D models described and figured in the following publication: Paulina-Carabajal, A. and Nieto, M. N. In press. Brief comment on the brain and inner ear of Giganotosaurus carolinii (Dinosauria: Theropoda) based on CT scans. Ameghiniana. https://doi.org/10.5710/AMGH.25.10.2019.3237
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 06, issue 02 (2020)

PDF
3D models related to the publication: Upper third molar internal structural organization and semicircular canal morphology in Plio-Pleistocene South African cercopithecoids.
Amélie Beaudet Logo, Guillaume Fleury, Emmanuel Gilissen, Jean Dumoncel Logo, John F. Thackeray Logo, Laurent Bruxelles Logo, Benjamin Duployer Logo, Christophe Tenailleau Logo, Lunga Bam Logo, Jakobus Hoffman Logo, Frikke De Beer and José Braga Logo
Published online: 10/10/2019

Keywords: bony labyrinth; cercopithecoids; enamel-dentine junction; upper third molars

https://doi.org/10.18563/journal.m3.86

  Abstract

    The present 3D Dataset contains the 3D models of the enamel-dentine junctions of upper third molars and of the bony labyrinths of the extant cercopithecoid specimens analyzed in the following publication: Beaudet, A., Dumoncel, J., Thackeray, J.F., Bruxelles, L., Duployer, B., Tenailleau, C., Bam, L., Hoffman, J., de Beer, F., Braga, J.: Upper third molar internal structural organization and semicircular canal morphology in Plio-Pleistocene South African cercopithecoids. Journal of Human Evolution 95, 104-120. https://doi.org/10.1016/j.jhevol.2016.04.004 

  Specimens
 
  M3 article infos

Published in Volume 06, issue 01 (2020)

PDF

Page 8 of 10, showing 20 record(s) out of 195 total