Current issue


2025-09
Volume 11, issue 03
<< prev. next >>
ISSN: 2274-0422

Article Management

You must log in to submit or manage articles.

You do not have an account yet ? Sign up.

Most downloaded articles (last month)


Page 5 of 10, showing 20 record(s) out of 194 total

3D models related to the publication: A new prozostrodontian cynodont (Eucynodontia, Probainognathia) from the Upper Triassic of southern Brazil
Micheli Stefanello Logo, Leonardo Kerber Logo, Agustín Martinelli Logo and Sérgio Dias-da-Silva Logo
Published online: 08/10/2020

Keywords: Late Triassic; lower jaw; Micro-CT; Prozostrodontia

https://doi.org/10.18563/journal.m3.120

  Abstract

    This contribution contains the 3D model(s) described and figured in the following publication: The present 3D Dataset contains the 3D models and CT-Scan slices of the lower jaws and teeth analyzed in “A new prozostrodontian cynodont (Eucynodontia, Probainognathia) from the Upper Triassic of southern Brazil”. https://doi.org/10.1080/02724634.2020.1782415 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 06, issue 05 (2020)

PDF
3D models related to the publication: Siphonodella leiosa (Conodonta), a new unornamented species from the Tournaisian (lower Carboniferous) of Puech de la Suque (Montagne Noire, France).
Louise Souquet Logo, Carlo Corradini Logo and Catherine Girard
Published online: 21/07/2020

Keywords: Carboniferous; Conodonts; Holotype; Montagne Noire; Siphonodella

https://doi.org/10.18563/journal.m3.115

  Abstract

    The present 3D Dataset contains the 3D models of the holotype and the paratypes of the new species Siphonodella leiosa described and analyzed in the following publication: L. Souquet, C. Corradini, C. Girard: Siphonodella leiosa (Conodonta), a new unornamented species from the Tournaisian (lower Carboniferous) of Puech de la Suque (Montagne Noire, France). Geobios, https://doi.org/10.1016/j.geobios.2020.06.004

  Specimens
 
  M3 article infos

Published in Volume 06, issue 03 (2020)

PDF
A delphinid petrosal bone from a gravesite on Ahu Tahai, Easter Island: taxonomic attribution, external and internal morphology.
Maëva J. Orliac Logo, Catherine Orliac, Michel C. Orliac and Antoine Hautin
Published online: 31/03/2020

Keywords: bony labyrinth; petrosal; Rapanui; stapes; vestibulo cochlear nerve

https://doi.org/10.18563/journal.m3.91

  Abstract

    In this contribution, we describe the external and internal morphology of a delphinid petrosal bone collected from Ahu Tahai, a burial site located on the Southwestern coast of Easter Island, at Hangaroa. We discuss the taxonomic attribution of this archaeological item and describe its internal structures based on µCT data, including the bony labyrinth and the nerve and vein patterns. Identification of the nerves exists lead us to relocate the identification of the foramen singulare in delphinid petrosals.

      

  Specimens
 
  M3 article infos

Published in Volume 06, issue 02 (2020)

PDF
3D models related to the publication: The Neogene record of northern South American native ungulates
Juan D. Carrillo Logo, Eli Amson Logo, Carlos Jaramillo Logo, Rodolfo Sánchez, Luis Quiroz, Carlos Cuartas, Aldo F. Rincón Burbano Logo and Marcelo R. Sánchez-Villagra Logo
Published online: 30/07/2018

Keywords: Astrapotheria; Castilletes Formation; Neogene; Notoungulata; San Gregorio Formation

https://doi.org/10.18563/journal.m3.61

  Abstract

    This contribution contains the 3D models described and figured in: The Neogene record of northern South American native ungulates. Smithsonian Contributions to Paleobiology. Doi: 10.5479/si.1943-6688.101
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 04, issue 02 (2018)

PDF
3D models related to the publication: Protocetid (Cetacea, Artiodactyla) bullae and petrosals from the Middle Eocene locality of Kpogamé, Togo: new insights into the early history of cetacean hearing
Mickaël Mourlam Logo and Maëva J. Orliac Logo
Published online: 31/05/2017

Keywords: archaeocete; auditory region; Lutetian; petrotympanic complex

https://doi.org/10.18563/m3.3.1.e2

  Abstract

    This contribution contains the 3D models described and figured in the following publication: Mourlam, M., Orliac, M. J. (2017), Protocetid (Cetacea, Artiodactyla) bullae and petrosals from the Middle Eocene locality of Kpogamé, Togo: new insights into the early history of cetacean hearing. Journal of Systematic Palaeontology https://doi.org/10.1080/14772019.2017.1328378
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 03, Issue 01 (2017)

PDF
3D models related to the publication: Morphogenesis of the inner ear at different stages of normal human development
Saki Toyoda, Naoto Shiraki, Shigehito Yamada Logo, Chigako Uwabe, Hirohiko Imai Logo, Tetsuya Matsuda Logo, Akio Yoneyama Logo, Tohoru Takeda and Tetsuya Takakuwa Logo
Published online: 22/10/2015

Keywords: human embryo; human inner ear; magnetic resonance imaging; phase-contrast X-ray CT; three-dimensional reconstruction

https://doi.org/10.18563/m3.1.3.e6

  Abstract

    The present 3D Dataset contains the 3D models analyzed in: Toyoda S et al., 2015, Morphogenesis of the inner ear at different stages of normal human development. The Anatomical Record. doi : 10.1002/ar.23268 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 01, Issue 03 (2015)

PDF
3D fossil reconstruction related to the publication: Body shape and life style of the extinct rodent Canariomys bravoi from Tenerife, Canary Islands.
Jacques Michaux, Lionel Hautier Logo, Rainer Hutterer Logo, Renaud Lebrun Logo, Franck Guy Logo and Francisco García-Talavera
Published online: 05/01/2015

Keywords: Canariomys; Canary Islands; Fossil reconstruction; Insularity; Rodentia

https://doi.org/10.18563/m3.1.1.e3

  Abstract

    This contribution contains the 3D reconstruction of Canariomys bravoi, described and figured in the following publication: Michaux J., Hautier L., Hutterer R., Lebrun R., Guy F., García-Talavera F., 2012 : Body shape and life style of the extinct rodent Canariomys bravoi (Mammalia, Murinae) from Tenerife, Canary Islands (Spain). Comptes Rendus Palevol 11 (7), 485-494. DOI: 10.1016/j.crpv.2012.06.004
      

  Specimens

    Canariomys bravoi TFMCV872-873 View specimen

    M3#6

    This file contains the 3D reconstruction of Canariomys bravoi, described and figured in the following publication: Michaux J., Hautier L., Hutterer R., Lebrun R., Guy F., García-Talavera F., 2012 : Body shape and life style of the extinct rodent Canariomys bravoi (Mammalia, Murinae) from Tenerife, Canary Islands (Spain). Comptes Rendus Palevol 11 (7), 485-494.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf6   state:published




    Download 3D surface file


 
  See original publication
  M3 article infos

Published in Vol. 01, Issue 01 (2015)

PDF
3D models related to the publication: A new primate community from the earliest Oligocene of the Atlantic margin of Northwest Africa: Systematic, paleobiogeographic and paleoenvironmental implications
Laurent Marivaux Logo, Anne-Lise Charruault Logo and Mouloud Benammi Logo
Published online: 20/06/2024

Keywords: Africa; Anthropoidea; Atlantic Sahara; Eocene/Oligocene transition; Strepsirrhini

https://doi.org/10.18563/journal.m3.208

  Abstract

    This contribution contains the three-dimensional digital models of the dental fossil material of anthropoid and strepsirrhine primates, discovered in Lower Oligocene detrital deposits outcropping in the Porto Rico and El Argoub areas, east of the Dakhla peninsula region (Atlantic Sahara; in the south of Morocco, near the northern border of Mauritania). These fossils were described, figured and discussed in the following publication: Marivaux et al. (2024), A new primate community from the earliest Oligocene of the Atlantic margin of Northwest Africa: Systematic, paleobiogeographic and paleoenvironmental implications. Journal of Human Evolution. https://doi.org/10.1016/j.jhevol.2024.103548 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 10, issue 02 (2024)

PDF
3D models related to the publication: Exon capture museomics deciphers the nine-banded armadillo species complex and identifies a new species endemic to the Guiana Shield.
Mathilde Barthe Logo, Lionel Hautier Logo, Guillaume Billet Logo, Anderson Feijó Logo, Benoit Moison Logo, Benoît de Thoisy Logo, François Catzeflis Logo and Frédéric Delsuc Logo
Published online: 28/06/2024

Keywords: carapace; Dasypus guianensis; holotype; skeleton; Xenarthra

https://doi.org/10.18563/journal.m3.204

  Abstract

    This contribution contains 3D models of the holotype of a new species of long-nosed armadillos, the Guianan long-nosed armadillo (Dasypus guianensis) described in the following publication: Barthe M., Rancilhac L., Arteaga M. C., Feijó A., Tilak M.-K., Justy F., Loughry W. J., McDonough C. M., de Thoisy B., Catzeflis F., Billet G., Hautier L., Nabholz B., and Delsuc F. 2024. Exon capture museomics deciphers the nine-banded armadillo species complex and identifies a new species endemic to the Guiana Shield. Systematic Biology, syae027. https://doi.org/10.1093/sysbio/syae027
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 10, issue 02 (2024)

PDF
The endocranial cast of a 10 ka intentionally deformed human cranium from China
Yin Qiyu Logo, Li Qiang Logo, Ma Ming Logo, Zhang Wei Logo and Ni Xijun Logo
Published online: 27/07/2022

Keywords: endocranial cast; intentional cranial deformation; Northeast China

https://doi.org/10.18563/journal.m3.169

  Abstract

    This contribution contains the 3D model of an endocranial cast analyzed in “A 10 ka intentionally deformed human skull from Northeast Asia”. There are many studies on the morphological characteristics of intentional cranial deformation (ICD), but few related 3D models were published. Here, we present the surface model of an intentionally deformed 10 ka human cranium for further research on ICD practice. The 3D model of the endocranial cast of this ICD cranium was discovered near Harbin City, Province Heilongjiang, Northeast China. The fossil preserved only the frontal, parietal, and occipital bones. To complete the endocast model of the specimen, we printed a 3D model and used modeling clay to reconstruct the missing part based on the general form of the modern human endocast morphology.
      

  Specimens

    Homo sapiens IVPP-PA1616 View specimen

    M3#972

    The frontal region of the endocast is flattened, probably formed by the constant pressure on the frontal bone during growth. There is a well-developed frontal crest on the endocranial surface. The endocast widens posteriorly from the frontal lobe. The widest point of the endocast is at the lateral border of the parietal lobe. The lower parietal areas display a marked lateral expansion. The overall shape of the endocast is asymmetrical, with the left side of the parietal lobe being more laterally expanded than the right side. Like the frontal lobe, the occipital lobe is also anteroposteriorly flattened.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.972   state:published




    Download 3D surface file

    M3#976

    The original endocranial cast model (with texture) of IVPP-PA1616. It shows the original structures of the specimen, and was not altered in any way.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.976   state:published




    Download 3D surface file


 
  M3 article infos

Published in Volume 08, issue 03 (2022)

PDF
3D model related to the publication: The scaly skin of the abelisaurid Carnotaurus sastrei (Theropoda: Ceratosauria) from the Upper Cretaceous of Patagonia
Christophe Hendrickx Logo and Phil Bell
Published online: 14/08/2021

Keywords: Abelisauridae; Integument; non-avian Theropoda; Scales

https://doi.org/10.18563/journal.m3.149

  Abstract

    The present 3D Dataset contains the 3D model analyzed in Hendrickx, C. and Bell, P. R. 2021. The scaly skin of the abelisaurid Carnotaurus sastrei (Theropoda: Ceratosauria) from the Upper Cretaceous of Patagonia. Cretaceous Research. https://doi.org/10.1016/j.cretres.2021.104994 

  Specimens

    Carnotaurus sastrei MACN 894 View specimen

    M3#802

    3D reconstruction of the biggest patch of skin (~1200 cm2) from the anterior tail region of the holotype of Carnotaurus, which is the largest single patch of squamous integument available for any saurischian. The skin consists of medium to large (up to 65 mm in diameter) conical feature scales surrounded by a network of low and small (< 14 mm) irregular basement scales separated by narrow interstitial tissue.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.802   state:published




    Download 3D surface file


 
  M3 article infos

Published in Volume 07, issue 03 (2021)

PDF
3D models related to the publication: First partial cranium of Togocetus from Kpogamé (Togo) and the protocetid diversity in the Togolese phosphate basin.
Koffi E. Kassegne, Mickaël Mourlam Logo, Guillaume Guinot Logo, Yawovi Z. Amoudji Logo, Jeremy E. Martin Logo, Kodjo A. Togbe, Ampah K. Johnson and Lionel Hautier Logo
Published online: 22/06/2021

Keywords: Comparative anatomy; Middle Eocene; Paleoenvironment; phylogeny; Protocetidae

https://doi.org/10.18563/journal.m3.143

  Abstract

    This contribution contains the 3D models described and figured in the following publication: Kassegne K. E., Mourlam M. J., Guinot G., Amoudji Y. Z., Martin J. E., Togbe K. A., Johnson A. K., Hautier L. 2021. First partial cranium of Togocetus from Kpogamé (Togo) and the protocetid diversity in the Togolese phosphate basin. Annales de Paléontologie, Issue 2, April–June 2021, 102488. https://doi.org/10.1016/j.annpal.2021.102488  

  Specimens

    Togocetus cf. traversei ULDG-KPO1 View specimen

    M3#768

    The specimen consists of a partial cranium prepared out of a calcareous phosphate matrix. The partial cranium lacks the anterior part of the rostrum, the cranial roof, and most of the basicranium apart from the left zygomatic process of the squamosal. The maxilla, nasal, palatine, pterygoid, alisphenoid, and squamosal bones are preserved, as well as two incomplete dental rows described hereafter.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.768   state:published




    Download 3D surface file

    M3#770

    µCT . Resolution: 0.3156mm. This scan can easily be opened with Fiji, MorphoDig, 3DSlicer, or any software that reads .MHD file format. Also, the .RAW file can be opened easily with other software such as Avizo/Amira when providing the correct dimensions (which are enclosed within the file name)

    Type: "3D_CT"

    doi: 10.18563/m3.sf.770   state:published




    Download CT data


 
  See original publication
  M3 article infos

Published in Volume 07, issue 02 (2021)

PDF
3D models related to the publication: Early Oligocene chinchilloid caviomorphs from Puerto Rico and the initial rodent colonization of the West Indies
Laurent Marivaux Logo, Jorge Velez-Juarbe Logo and Pierre-Olivier Antoine Logo
Published online: 07/09/2020

Keywords: Caribbean islands; Caviomorpha; Paleobiogeography; Paleogene; Rodentia

https://doi.org/10.18563/journal.m3.127

  Abstract

    This contribution contains the 3D models of the fossil teeth of two chinchilloid caviomorph rodents (Borikenomys praecursor and Chinchilloidea gen. et sp. indet.) discovered from lower Oligocene deposits of Puerto Rico, San Sebastian Formation (locality LACM Loc. 8060). These fossils were described and figured in the following publication: Marivaux et al. (2020), Early Oligocene chinchilloid caviomorphs from Puerto Rico and the initial rodent colonization of the West Indies. Proceedings of the Royal Society B. http://dx.doi.org/10.1098/rspb.2019.2806 

  Specimens

    Borikenomys praecursor LACM 162447 View specimen

    M3#638

    Right lower m3. This isolated tooth was scanned with a resolution of 6 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France). AVIZO 7.1 (Visualization Sciences Group) software was used for visualization, segmentation, and 3D rendering. The specimen was prepared within a “labelfield” module of AVIZO, using the segmentation threshold selection tool.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.638   state:published




    Download 3D surface file

    Borikenomys praecursor LACM 162446 View specimen

    M3#639

    Fragment of lower molar (most of the mesial part). This isolated broken tooth was scanned with a resolution of 6 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France). AVIZO 7.1 (Visualization Sciences Group) software was used for visualization, segmentation, and 3D rendering. The specimen was prepared within a “labelfield” module of AVIZO, using the segmentation threshold selection tool.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.639   state:published




    Download 3D surface file

    indet indet LACM 162448 View specimen

    M3#640

    Fragment of either an upper tooth (mesial laminae) or a lower tooth (distal laminae). The specimen was scanned with a resolution of 6 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France). AVIZO 7.1 (Visualization Sciences Group) software was used for visualization, segmentation, and 3D rendering. This fragment of tooth was prepared within a “labelfield” module of AVIZO, using the segmentation threshold selection tool.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.640   state:published




    Download 3D surface file


 
  M3 article infos

Published in Volume 06, issue 04 (2020)

PDF
A photorealistic collection of Homo sapiens crania for research and dissemination
Paolo Lussu Logo and Elisabetta Marini Logo
Published online: 08/04/2020

Keywords: distance learning; Photogrammetry; teaching; validation

https://doi.org/10.18563/journal.m3.112

  Abstract

    This contribution contains the 3D models described and figured in the following publications:
    - Marini E., Lussu P., 2020. A virtual physical anthropology lab. Teaching in the time of coronavirus, in prep.;
    - Lussu P., Bratzu D., Marini E., 2020. Cloud-based ultra close-range digital photogrammetry: validation of an approach for the effective virtual reconstruction of skeletal remains, in prep. 

  Specimens
 
  M3 article infos

Published in Volume 06, issue 02 (2020)

PDF
3D models of fossils of Dinomyidae rodents (Rodentia: Caviomorpha) from the Miocene and Quaternary of Brazil
Leonardo Kerber Logo, David Dias da Silva Logo and Francisco R. Negri Logo
Published online: 18/07/2019

Keywords: Micro CT-SCan; Morphology; Potamarchinae; Serra da Capivara; Solimões Formation

https://doi.org/10.18563/journal.m3.95

  Abstract

    This contribution contains 3D models of extinct rodents Dinomyidae from Miocene and Quaternary of Brazil. The Miocene specimens that were digitalized include the holotypes of Potamarchus adamiae, Pseudopotamarchus villanuevai, and Ferigolomys pacarana collected in the Solimões Formation (Upper Miocene), northern Brazil. The Quaternary specimens are the holotype and paratype of Niedemys piauiensis, found in Upper Pleistocene deposits from northeast Brazil. 

  Specimens
 
  M3 article infos

Published in Volume 05, issue 03 (2019)

PDF
3D models related to the publication: Upper third molar internal structural organization and semicircular canal morphology in Plio-Pleistocene South African cercopithecoids.
Amélie Beaudet Logo, Guillaume Fleury, Emmanuel Gilissen, Jean Dumoncel Logo, John F. Thackeray Logo, Laurent Bruxelles Logo, Benjamin Duployer Logo, Christophe Tenailleau Logo, Lunga Bam Logo, Jakobus Hoffman Logo, Frikke De Beer and José Braga Logo
Published online: 10/10/2019

Keywords: bony labyrinth; cercopithecoids; enamel-dentine junction; upper third molars

https://doi.org/10.18563/journal.m3.86

  Abstract

    The present 3D Dataset contains the 3D models of the enamel-dentine junctions of upper third molars and of the bony labyrinths of the extant cercopithecoid specimens analyzed in the following publication: Beaudet, A., Dumoncel, J., Thackeray, J.F., Bruxelles, L., Duployer, B., Tenailleau, C., Bam, L., Hoffman, J., de Beer, F., Braga, J.: Upper third molar internal structural organization and semicircular canal morphology in Plio-Pleistocene South African cercopithecoids. Journal of Human Evolution 95, 104-120. https://doi.org/10.1016/j.jhevol.2016.04.004 

  Specimens
 
  M3 article infos

Published in Volume 06, issue 01 (2020)

PDF
3D models related to the publication: Systematic and locomotor diversification of the Adapis group (Primates, Adapiformes) in the late Eocene of the Quercy (Southwest France), revealed by humeral remains.
Judit Marigó Logo, Nicole Verrière and Marc Godinot Logo
Published online: 20/12/2018

Keywords: Adapis; humeri; locomotion; Quercy

https://doi.org/10.18563/journal.m3.75

  Abstract

    The present 3D Dataset contains the 3D models analyzed in the publication “Systematic and locomotor diversification of the Adapis group (Primates, Adapiformes) in the late Eocene of the Quercy (Southwest France), revealed by humeral remains”. In this paper, twenty humeral specimens from the old and new Quercy collections attributed to the fossil primates Adapis and Palaeolemur are described and analysed together. In this dataset only the scans of the fossils belonging to the collections of Université de Montpellier are provided.
    In our paper (Marigó et al., 2019) we provide a qualitative and quantitative analysis of the different humeri, revealing that high variability is present within the “Adapis group” sample. Six different morphotypes are identified, confirming that what has often been called “Adapis parisiensis” is a mix of different species that present different locomotor adaptations. 

  Specimens
 
  M3 article infos

Published in Volume 04, issue 03 (2018)

PDF
3D models related to the publication: Evolutionary Adaptation to Aquatic Lifestyle in Extinct Sloths Can Lead to Systemic Alteration of Bone Structure.
Eli Amson Logo, Guillaume Billet Logo and Christian de Muizon Logo
Published online: 09/05/2018

Keywords: aquatic lifestyle; brain endocast; evolutionary adaptation; olfactory bulbs; Thalassocnus

https://doi.org/10.18563/journal.m3.64

  Abstract

    The present 3D Dataset contains the 3D models analyzed in: Amson et al., Under review. Evolutionary Adaptation to Aquatic Lifestyle in Extinct Sloths Can Lead to Systemic Alteration of Bone Structure doi:10.1098/rspb.2018.0270

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 04, issue 01 (2018)

PDF
3D data and models related to the publication: An updated description of the osteology of the pancake tortoise Malacochersus tornieri (Testudines: Testudinidae) with special focus on intraspecific variation.
Anna-Katharina Mautner Logo, Ashley E. Latimer Logo, Uwe Fritz Logo and Torsten M. Scheyer Logo
Published online: 25/01/2017

Keywords: brain endocast; chelonian shell; micro computed tomography; Morphology; variability

https://doi.org/10.18563/m3.2.2.e4

  Abstract

    The present publication contains the µCT dataset and the 3D models analyzed in the following publication: Mautner, A.-K., A. E. Latimer, U. Fritz, and T. M. Scheyer. An updated description of the osteology of the pancake tortoise Malacochersus tornieri (Testudines: Testudinidae) with special focus on intraspecific variation. Journal of Morphology. https://doi.org/10.1002/jmor.20640 

  Specimens

    Malacochersus tornieri ZM 100.102 View specimen

    M3#129

    Virtual brain and inner ear endocast of Malacochersus tornieri (ZM 100.102; Zoological Museum of The University of Zurich). This virtual model is accompanied by the 3D dataset. Blue, endocranium; red, blood vessels; purple, semicircular canals; yellow, cranial nerves.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.129   state:published




    Download 3D surface file

    M3#130

    3D dataset of skull of Malacochersus tornieri (ZM 100.102)

    Type: "3D_CT"

    doi: 10.18563/m3.sf.130   state:published




    Download CT data


 
  See original publication
  M3 article infos

Published in Volume 02, Issue 02 (2017)

PDF
MicroCT survey of larval skeletal mineralization in the Cuban gar Atractosteus tristoechus (Actinopterygii; Lepisosteiformes)
Raphaël Scherrer Logo, Andrés Hurtado, Erik Garcia Machado Logo and Mélanie Debiais-Thibaud Logo
Published online: 17/05/2017

Keywords: Actinopterygii; development; Lepisosteiformes; mineralization; skeleton

https://doi.org/10.18563/m3.3.3.e3

  Abstract

    Using X-ray microtomography, we describe the ossification events during the larval development of a non-teleost actinopterygian species: the Cuban gar Atractosteus tristoechus from the order Lepisosteiformes. We provide a detailed developmental series for each anatomical structure, covering a large sequence of mineralization events going from an early stage (13 days post-hatching, 21mm total length) to an almost fully ossified larval stage (118dph or 87mm in standard length). With this work, we expect to bring new developmental data to be used in further comparative studies with other lineages of bony vertebrates. We also hope that the on-line publication of these twelve successive 3D reconstructions, fully labelled and flagged, will be an educational tool for all students in comparative anatomy. 

  Specimens
 
  M3 article infos

Published in Volume 03, Issue 03 (2017)

PDF

Page 5 of 10, showing 20 record(s) out of 194 total