Current issue


2025-09
Volume 11, issue 03
<< prev. next >>
ISSN: 2274-0422

Article Management

You must log in to submit or manage articles.

You do not have an account yet ? Sign up.

Most downloaded articles (last 90 days)


Page 5 of 10, showing 20 record(s) out of 196 total

3D models related to the publication: Morphology of the human embryonic brain and ventricles
Naoki Shiraishi Logo, Airi Katayama, Takashi Nakashima, Naoto Shiraki, Shigehito Yamada Logo, Chigako Uwabe, Katsumi Kose Logo and Tetsuya Takakuwa Logo
Published online: 27/07/2015

Keywords: human brain; human embryo; magnetic resonance imaging; three-dimensional reconstruction

https://doi.org/10.18563/m3.1.3.e3

  Abstract

    This contribution contains the 3D models described and figured in the following publication: Shiraishi N et al. Morphology and morphometry of the human embryonic brain: A three-dimensional analysis NeuroImage 115, 2015, 96-103, DOI: 10.1016/j.neuroimage.2015.04.044.

      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 01, Issue 03 (2015)

PDF
3D models related to the publication: Anatomical correlates and nomenclature of the chiropteran endocranial cast
Jacob Maugoust Logo and Maëva J. Orliac Logo
Published online: 06/04/2023

Keywords: angiology; bats; brain; endocast; neuroanatomy

https://doi.org/10.18563/journal.m3.193

  Abstract

    The present 3D Dataset contains the 3D models of extant Chiropteran endocranial casts, documenting 16 of the 19 extant bat families. They are used by Maugoust & Orliac (2023) to assess the correspondences between the brain and brain-surrounding tissues (i.e., neural tissues, blood vessels, meninges) and their imprint on the braincase, allowing for eventually proposing a Chiroptera-scale nomenclature of the endocast. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 09, issue 02 (2023)

PDF
3D model of Palaeolama sp. related to the publication: Endocranial casts of Camelops hesternus and Palaeolama sp., new insights into the recent history of the camelid brain.
 
Ana Balcarcel Logo, Dylan Bastiaans and Maëva J. Orliac Logo
Published online: 25/09/2023

Keywords: Artiodactyla; Camelidae; natural endocast; neocortex

https://doi.org/10.18563/journal.m3.190

  Abstract

    The present 3D Dataset contains the 3D model of the endocranial cast of Palaeolama sp. from the mid-Pleistocene (~1.2 Mya) of South America, analyzed in Balcarcel et al. 2023.
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 09, issue 03 (2023)

PDF
The endocranial cast of a 10 ka intentionally deformed human cranium from China
Yin Qiyu Logo, Li Qiang Logo, Ma Ming Logo, Zhang Wei Logo and Ni Xijun Logo
Published online: 27/07/2022

Keywords: endocranial cast; intentional cranial deformation; Northeast China

https://doi.org/10.18563/journal.m3.169

  Abstract

    This contribution contains the 3D model of an endocranial cast analyzed in “A 10 ka intentionally deformed human skull from Northeast Asia”. There are many studies on the morphological characteristics of intentional cranial deformation (ICD), but few related 3D models were published. Here, we present the surface model of an intentionally deformed 10 ka human cranium for further research on ICD practice. The 3D model of the endocranial cast of this ICD cranium was discovered near Harbin City, Province Heilongjiang, Northeast China. The fossil preserved only the frontal, parietal, and occipital bones. To complete the endocast model of the specimen, we printed a 3D model and used modeling clay to reconstruct the missing part based on the general form of the modern human endocast morphology.
      

  Specimens

    Homo sapiens IVPP-PA1616 View specimen

    M3#972

    The frontal region of the endocast is flattened, probably formed by the constant pressure on the frontal bone during growth. There is a well-developed frontal crest on the endocranial surface. The endocast widens posteriorly from the frontal lobe. The widest point of the endocast is at the lateral border of the parietal lobe. The lower parietal areas display a marked lateral expansion. The overall shape of the endocast is asymmetrical, with the left side of the parietal lobe being more laterally expanded than the right side. Like the frontal lobe, the occipital lobe is also anteroposteriorly flattened.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.972   state:published




    Download 3D surface file

    M3#976

    The original endocranial cast model (with texture) of IVPP-PA1616. It shows the original structures of the specimen, and was not altered in any way.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.976   state:published




    Download 3D surface file


 
  M3 article infos

Published in Volume 08, issue 03 (2022)

PDF
3D models related to the publication: An assemblage of giant aquatic snakes (Serpentes, Palaeophiidae) from the Eocene of Togo
Georgios L. Georgalis Logo, Guillaume Guinot Logo, Koffi E. Kassegne, Yawovi Z. Amoudji Logo, Ampah K. Johnson, Henri Cappetta Logo and Lionel Hautier Logo
Published online: 24/09/2021

Keywords: Africa; Eocene; Palaeophis; Serpentes; vertebral anatomy

https://doi.org/10.18563/journal.m3.154

  Abstract

    This contribution contains the 3D models described and figured in the following publication: Georgalis, G.L., G. Guinot, K.E. Kassegne, Y.Z. Amoudji, A.K.C. Johnson, H. Cappetta and L. Hautier. 2021. An assemblage of giant aquatic snakes (Serpentes, Palaeophiidae) from the Eocene of Togo. Swiss Journal of Palaeontology 140, https://doi.org/10.1186/s13358-021-00236-w 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 07, issue 03 (2021)

PDF
3D models related to the publication: First partial cranium of Togocetus from Kpogamé (Togo) and the protocetid diversity in the Togolese phosphate basin.
Koffi E. Kassegne, Mickaël Mourlam Logo, Guillaume Guinot Logo, Yawovi Z. Amoudji Logo, Jeremy E. Martin Logo, Kodjo A. Togbe, Ampah K. Johnson and Lionel Hautier Logo
Published online: 22/06/2021

Keywords: Comparative anatomy; Middle Eocene; Paleoenvironment; phylogeny; Protocetidae

https://doi.org/10.18563/journal.m3.143

  Abstract

    This contribution contains the 3D models described and figured in the following publication: Kassegne K. E., Mourlam M. J., Guinot G., Amoudji Y. Z., Martin J. E., Togbe K. A., Johnson A. K., Hautier L. 2021. First partial cranium of Togocetus from Kpogamé (Togo) and the protocetid diversity in the Togolese phosphate basin. Annales de Paléontologie, Issue 2, April–June 2021, 102488. https://doi.org/10.1016/j.annpal.2021.102488  

  Specimens

    Togocetus cf. traversei ULDG-KPO1 View specimen

    M3#768

    The specimen consists of a partial cranium prepared out of a calcareous phosphate matrix. The partial cranium lacks the anterior part of the rostrum, the cranial roof, and most of the basicranium apart from the left zygomatic process of the squamosal. The maxilla, nasal, palatine, pterygoid, alisphenoid, and squamosal bones are preserved, as well as two incomplete dental rows described hereafter.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.768   state:published




    Download 3D surface file

    M3#770

    µCT . Resolution: 0.3156mm. This scan can easily be opened with Fiji, MorphoDig, 3DSlicer, or any software that reads .MHD file format. Also, the .RAW file can be opened easily with other software such as Avizo/Amira when providing the correct dimensions (which are enclosed within the file name)

    Type: "3D_CT"

    doi: 10.18563/m3.sf.770   state:published




    Download CT data


 
  See original publication
  M3 article infos

Published in Volume 07, issue 02 (2021)

PDF
3D models related to the publication: An unpredicted ancient colonization of the West Indies by North American rodents: dental evidence of a geomorph from the early Oligocene of Puerto Rico
Laurent Marivaux Logo, Jorge Velez-Juarbe Logo and Pierre-Olivier Antoine Logo
Published online: 16/07/2021

Keywords: Caribbean islands; Geomorpha; Paleobiogeography; Paleogene; Rodentia

https://doi.org/10.18563/journal.m3.128

  Abstract

    This contribution provides the raw files for the μCT-scan data and renderings of the three-dimensional digital models of two fossil teeth of a geomyin geomorph rodent (Caribeomys merzeraudi), discovered from lower Oligocene deposits of Puerto Rico, San Sebastian Formation (locality LACM Loc. 8060). These fossils were described, figured and discussed in the following publication: Marivaux et al. (2021), An unpredicted ancient colonization of the West Indies by North American rodents: dental evidence of a geomorph from the early Oligocene of Puerto Rico. Papers in Palaeontology. https://doi.org/10.1002/spp2.1388 

  Specimens

    Caribeomys merzeraudi LACM 162478 View specimen

    M3#712

    Right lower dp4: isolated deciduous premolar. The specimen was scanned with a resolution of 5 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France). AVIZO 7.1 (Visualization Sciences Group) software was used for visualization, segmentation, and 3D rendering. This isolated tooth was prepared within a “labelfield” module of AVIZO, using the segmentation threshold selection tool.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.712   state:published




    Download 3D surface file

    M3#714

    5µm µCT data set . Right lower dp4: isolated deciduous premolar. The specimen was scanned with a resolution of 5 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France).

    Type: "3D_CT"

    doi: 10.18563/m3.sf.714   state:published




    Download CT data

    Caribeomys merzeraudi LACM 162449 View specimen

    M3#713

    Right lower molar (m1 or m2). The specimen was scanned with a resolution of 4.5 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France). AVIZO 7.1 (Visualization Sciences Group) software was used for visualization, segmentation, and 3D rendering. This isolated tooth was prepared within a “labelfield” module of AVIZO, using the segmentation threshold selection tool.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.713   state:published




    Download 3D surface file

    M3#715

    µCT data at 4.5µm

    Type: "3D_CT"

    doi: 10.18563/m3.sf.715   state:published




    Download CT data


 
  See original publication
  M3 article infos

Published in Volume 07, issue 03 (2021)

PDF
3D models related to the publication: Early Oligocene chinchilloid caviomorphs from Puerto Rico and the initial rodent colonization of the West Indies
Laurent Marivaux Logo, Jorge Velez-Juarbe Logo and Pierre-Olivier Antoine Logo
Published online: 07/09/2020

Keywords: Caribbean islands; Caviomorpha; Paleobiogeography; Paleogene; Rodentia

https://doi.org/10.18563/journal.m3.127

  Abstract

    This contribution contains the 3D models of the fossil teeth of two chinchilloid caviomorph rodents (Borikenomys praecursor and Chinchilloidea gen. et sp. indet.) discovered from lower Oligocene deposits of Puerto Rico, San Sebastian Formation (locality LACM Loc. 8060). These fossils were described and figured in the following publication: Marivaux et al. (2020), Early Oligocene chinchilloid caviomorphs from Puerto Rico and the initial rodent colonization of the West Indies. Proceedings of the Royal Society B. http://dx.doi.org/10.1098/rspb.2019.2806 

  Specimens

    Borikenomys praecursor LACM 162447 View specimen

    M3#638

    Right lower m3. This isolated tooth was scanned with a resolution of 6 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France). AVIZO 7.1 (Visualization Sciences Group) software was used for visualization, segmentation, and 3D rendering. The specimen was prepared within a “labelfield” module of AVIZO, using the segmentation threshold selection tool.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.638   state:published




    Download 3D surface file

    Borikenomys praecursor LACM 162446 View specimen

    M3#639

    Fragment of lower molar (most of the mesial part). This isolated broken tooth was scanned with a resolution of 6 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France). AVIZO 7.1 (Visualization Sciences Group) software was used for visualization, segmentation, and 3D rendering. The specimen was prepared within a “labelfield” module of AVIZO, using the segmentation threshold selection tool.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.639   state:published




    Download 3D surface file

    indet indet LACM 162448 View specimen

    M3#640

    Fragment of either an upper tooth (mesial laminae) or a lower tooth (distal laminae). The specimen was scanned with a resolution of 6 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France). AVIZO 7.1 (Visualization Sciences Group) software was used for visualization, segmentation, and 3D rendering. This fragment of tooth was prepared within a “labelfield” module of AVIZO, using the segmentation threshold selection tool.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.640   state:published




    Download 3D surface file


 
  M3 article infos

Published in Volume 06, issue 04 (2020)

PDF
3D models related to the publication: Siphonodella leiosa (Conodonta), a new unornamented species from the Tournaisian (lower Carboniferous) of Puech de la Suque (Montagne Noire, France).
Louise Souquet Logo, Carlo Corradini Logo and Catherine Girard
Published online: 21/07/2020

Keywords: Carboniferous; Conodonts; Holotype; Montagne Noire; Siphonodella

https://doi.org/10.18563/journal.m3.115

  Abstract

    The present 3D Dataset contains the 3D models of the holotype and the paratypes of the new species Siphonodella leiosa described and analyzed in the following publication: L. Souquet, C. Corradini, C. Girard: Siphonodella leiosa (Conodonta), a new unornamented species from the Tournaisian (lower Carboniferous) of Puech de la Suque (Montagne Noire, France). Geobios, https://doi.org/10.1016/j.geobios.2020.06.004

  Specimens
 
  M3 article infos

Published in Volume 06, issue 03 (2020)

PDF
A photorealistic collection of Homo sapiens crania for research and dissemination
Paolo Lussu Logo and Elisabetta Marini Logo
Published online: 08/04/2020

Keywords: distance learning; Photogrammetry; teaching; validation

https://doi.org/10.18563/journal.m3.112

  Abstract

    This contribution contains the 3D models described and figured in the following publications:
    - Marini E., Lussu P., 2020. A virtual physical anthropology lab. Teaching in the time of coronavirus, in prep.;
    - Lussu P., Bratzu D., Marini E., 2020. Cloud-based ultra close-range digital photogrammetry: validation of an approach for the effective virtual reconstruction of skeletal remains, in prep. 

  Specimens
 
  M3 article infos

Published in Volume 06, issue 02 (2020)

PDF
3D models related to the publication: Protocetid (Cetacea, Artiodactyla) bullae and petrosals from the Middle Eocene locality of Kpogamé, Togo: new insights into the early history of cetacean hearing
Mickaël Mourlam Logo and Maëva J. Orliac Logo
Published online: 31/05/2017

Keywords: archaeocete; auditory region; Lutetian; petrotympanic complex

https://doi.org/10.18563/m3.3.1.e2

  Abstract

    This contribution contains the 3D models described and figured in the following publication: Mourlam, M., Orliac, M. J. (2017), Protocetid (Cetacea, Artiodactyla) bullae and petrosals from the Middle Eocene locality of Kpogamé, Togo: new insights into the early history of cetacean hearing. Journal of Systematic Palaeontology https://doi.org/10.1080/14772019.2017.1328378
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 03, Issue 01 (2017)

PDF
3D models related to the publication: Exon capture museomics deciphers the nine-banded armadillo species complex and identifies a new species endemic to the Guiana Shield.
Mathilde Barthe Logo, Lionel Hautier Logo, Guillaume Billet Logo, Anderson Feijó Logo, Benoit Moison Logo, Benoît de Thoisy Logo, François Catzeflis Logo and Frédéric Delsuc Logo
Published online: 28/06/2024

Keywords: carapace; Dasypus guianensis; holotype; skeleton; Xenarthra

https://doi.org/10.18563/journal.m3.204

  Abstract

    This contribution contains 3D models of the holotype of a new species of long-nosed armadillos, the Guianan long-nosed armadillo (Dasypus guianensis) described in the following publication: Barthe M., Rancilhac L., Arteaga M. C., Feijó A., Tilak M.-K., Justy F., Loughry W. J., McDonough C. M., de Thoisy B., Catzeflis F., Billet G., Hautier L., Nabholz B., and Delsuc F. 2024. Exon capture museomics deciphers the nine-banded armadillo species complex and identifies a new species endemic to the Guiana Shield. Systematic Biology, syae027. https://doi.org/10.1093/sysbio/syae027
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 10, issue 02 (2024)

PDF
3D models related to the publication: The neuroanatomy and pneumaticity of Hamadasuchus from the Cretaceous of Morocco and its significance for the paleoecology of Peirosauridae and other altirostral crocodylomorphs
Yohan Pochat-Cottilloux Logo, Nicolas Rinder, Gwendal Perrichon Logo, Jérôme Adrien Logo, Romain Amiot Logo, Stéphane Hua and Jeremy E. Martin Logo
Published online: 14/06/2023

Keywords: Crocodylomorpha; Hamadasuchus; Kem Kem; paleoneuroanatomy; Peirosauridae

https://doi.org/10.18563/journal.m3.183

  Abstract

    The present 3D Dataset contains the 3D models analyzed in Pochat-Cottilloux Y., Rinder N., Perrichon G., Adrien J., Amiot R., Hua S. & Martin J. E. (2023). The neuroanatomy and pneumaticity of Hamadasuchus from the Cretaceous of Morocco and its significance for the paleoecology of Peirosauridae and other altirostral crocodylomorphs. Journal of Anatomy, https://doi.org/10.1111/joa.13887 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 09, issue 02 (2023)

PDF
3D models related to the publication: Description of the first cranium and endocranial structures of Stenoplesictis minor (Mammalia, Carnivora), an early aeluroid from the Oligocene of the Quercy Phosphorites (southwestern France)
Camille Grohé Logo, Jérôme Surault Logo, Axelle Gardin Logo and Louis de Bonis Logo
Published online: 08/05/2022

Keywords: Aeluroidea; bony labyrinth; brain endocast; stapes; Stenoplesictoid

https://doi.org/10.18563/m3.166

  Abstract

    This contribution contains the 3D models described and figured in the following publication: Bonis, L. de, Grohé, C., Surault, J., Gardin, A. 2022. Description of the first cranium and endocranial structures of Stenoplesictis minor (Mammalia, Carnivora), an early aeluroid from the Oligocene of the Quercy Phosphorites (southwestern France). Historical Biology. https://doi.org/10.1080/08912963.2022.2045980 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 08, issue 02 (2022)

PDF
Skeletogenesis during the late embryonic development of the catshark Scyliorhinus canicula (Chondrichthyes; Neoselachii)
Sébastien Enault, Sylvain Adnet Logo and Mélanie Debiais-Thibaud Logo
Published online: 25/04/2016

Keywords: Chondrichthyes; development; mineralization; Scyliorhinus canicula; skeleton

https://doi.org/10.18563/m3.1.4.e2

  Abstract

    Current knowledge on the skeletogenesis of Chondrichthyes is scarce compared with their extant sister group, the bony fishes. Most of the previously described developmental tables in Chondrichthyes have focused on embryonic external morphology only. Due to its small body size and relative simplicity to raise eggs in laboratory conditions, the small-spotted catshark Scyliorhinus canicula has emerged as a reference species to describe developmental mechanisms in the Chondrichthyes lineage. Here we investigate the dynamic of mineralization in a set of six embryonic specimens using X-ray microtomography and describe the developing units of both the dermal skeleton (teeth and dermal scales) and endoskeleton (vertebral axis). This preliminary data on skeletogenesis in the catshark sets the first bases to a more complete investigation of the skeletal developmental in Chondrichthyes. It should provide comparison points with data known in osteichthyans and could thus be used in the broader context of gnathostome skeletal evolution. 

  Specimens
 
  M3 article infos

Published in Volume 01, Issue 04 (2016)

PDF
3D models related to the publication: Springhares, flying and flightless scaly-tailed squirrels (Anomaluromorpha, Rodentia) are the squirrely mouse: comparative anatomy of the masticatory musculature and its implications on the evolution of hystricomorphy in rodents
 
Léa Da Cunha Logo, Pierre-Henri Fabre Logo and Lionel Hautier Logo
Published online: 05/07/2024

Keywords: anatomy; Anomaluromorpha; hystricomorphy; masticatory muscles

https://doi.org/10.18563/journal.m3.235

  Abstract

    This contribution contains the 3D model(s) described and figured in the following publication: Da Cunha, L., Fabre, P.-H. & Hautier, L. (2024) Springhares, flying and flightless scaly-tailed squirrels (Anomaluromorpha, Rodentia) are the squirrely mouse: comparative anatomy of the masticatory musculature and its implications on the evolution of hystricomorphy in rodents. Journal of Anatomy, 244, 900–928.
      

  Specimens
 
  M3 article infos

Published in Volume 10, issue 03 (2024)

PDF
3D models related to the publication: The pharynx of the iconic stem-group chondrichthyan Acanthodes Agassiz, 1833 revisited with micro computed tomography.
Richard Dearden Logo, Anthony Herrel Logo and Alan Pradel Logo
Published online: 25/06/2024

Keywords: acanthodian; branchial skeleton; chondrichthyan; Permian; pharynx

https://doi.org/10.18563/journal.m3.226

  Abstract

    This contribution contains 3D models of the cranial endoskeleton of three specimens of the Permian ‘acanthodian’ stem-group chondrichthyan (cartilaginous fish) Acanthodes confusus, obtained using computed tomography. These datasets were described and analyzed in Dearden et al. (2024) “3D models related to the publication: The pharynx of the iconic stem-group chondrichthyan Acanthodes Agassiz, 1833 revisited with micro computed tomography.” Zoological Journal of the Linnean Society 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 10, issue 02 (2024)

PDF
3D models related to the publication: Redescription, taxonomic revaluation, and phylogenetic affinities of Proterochampsa nodosa (Archosauriformes: Proterochampsidae), early Late Triassic of Candelaria Sequence (Santa Maria Supersequence)
Daniel de Simão-Oliveira Logo, Felipe Lima Pinheiro Logo, Marco Brandalise de Andrade Logo and Flávio A. Pretto Logo
Published online: 04/07/2022

Keywords: Archosauriformes; Late Triassic; osteology; Proterochampsia; taxonomy

https://doi.org/10.18563/journal.m3.170

  Abstract

    The present 3D dataset contains the 3D models of the holotype of Proterochampsa nodosa that were built and analysed in “Redescription, taxonomic revaluation, and phylogenetic affinities of Proterochampsa nodosa (Archosauriformes: Proterochampsidae), early Late Triassic of Candelaria Sequence (Santa Maria Supersequence)”. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 08, issue 03 (2022)

PDF
3D models related to the publication: Patterns of bilateral asymmetry and allometry in Late Devonian Polygnathus conodonts
Catherine Girard, Anne-Lise Charruault Logo, Ronan Ledevin Logo and Sabrina Renaud Logo
Published online: 03/03/2021

Keywords: Conodonts; Late Devonian; Polygnathus communis; Polygnathus glaber

https://doi.org/10.18563/journal.m3.126

  Abstract

    This contribution contains the 3D models of the set of Famennian conodont elements belonging to the species Polygnathus glaber and Polygnathus communis analyzed in the following publication: Renaud et al. 2021: Patterns of bilateral asymmetry and allometry in Late Devonian Polygnathus. Palaeontology. https://doi.org/10.1111/pala.12513 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 07, issue 02 (2021)

PDF
3D models related to the publication: Endocranium and ecology of Eurotherium theriodis, a European hyaenodont mammal from the Lutetian
Morgane Dubied Logo, Floréal Solé Logo and Bastien Mennecart Logo
Published online: 09/09/2021

Keywords: brain; ecology; Eocene; Hyaenodonta; phylogeny

https://doi.org/10.18563/journal.m3.84

  Abstract

    The present 3D Dataset contains the 3D model analyzed in the article : Dubied et al. (2021), Endocranium and ecology of Eurotherium theriodis, a European hyaenodont mammal from the Lutetian. Acta Palaeontologica Polonica 2021, https://doi.org/10.4202/app.00771.2020 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 07, issue 03 (2021)

PDF

Page 5 of 10, showing 20 record(s) out of 196 total